Смекни!
smekni.com

Основная теорема алгебры

Всякий многочлен с любыми комплексными коэффициентами , степень которого не меньше единицы имеет хотя бы один корень, в общем случае комплексный.

План доказательства.

Лемма №1. Многочлен f(x) является непрерывной функцией комплексного переменного x.

Лемма №2. Если данн многочлен n-ой степени, n>0,

f(x)=a0xn+a1xn-1+…+an

с произвольными комплексными коэффициентами и если k- любое положительное действительное число, то для достаточно больших по модулю значений

|anxn|>k|axn-1+anxn-2+….+a0|

Лемма №3.

Лемма №4.(Лемма Даламбера).

Лемма №5.

Если действительная функция комплексного переменного f(x)непрерывна в замкнутом круге Е, то она ограничена.

Лемма №6.

Действительная функция комплексного переменного f(x)непрерывная в замкнутом круге Е достигает своего минимума и максимума.

Доказательство основной теоремы.

Лемма №1.

Надо доказать, что

|f(x0+x)-f(x0)|<e.

Докажем Лемму №1 сначала для многочлена без свободного члена и при x0=0

Если A=max(|a0 |,|a1|,…,|a n-1|) и

(1)

то |f(x)|=|a0xn+…+an-1x|


,

т.к |x|<б ,и из (1) б<1, то

т.к. a0=0 то f(0)=0

Что и требовалось доказать.

Теперь докажем непрерывность любого многочлена.

f(x0+x)=a0(x0+x)n+…+an

pаскрывая все скобки по формуле бинома и собирая вместе члены с

одинаковыми степенями x получим


Многочлен g(x)-это многочлен от x при x0 =0 и а0=0
|f(x0+x)-f(x)|=|g(x)|<e

Лемма доказана.

Лемма №2

Если дан многочлен n-ой степени, n>0,

f(x)=a0xn+a1xn-1+…+an

с произвольными комплексными коэффициентами и если k- любое положительное действительное число, то для достаточно больших по модулю значений x верно неравенство:

|a0xn|>k|a1xn-1+a2xn-2+….+an| (2)

Доказательсво.

Пусть А=max(

), тогда

пологая |x|>1, получим

откуда

следовательно неравенство (2) будет выполняться если |x|>1 и

Лемма №2 доказана.

Лемма №3.

Доказательство.

(3)

применим лемму 2: при k=2 существует такое N1 , что при |x|> N1

|a0xn|>2|a1xn-1+a2xn-2+….+an|

откуда

|a1xn-1+a2xn-2+….+an|<|a0xn|/2

тогда из (3)

при |x|>N=max(N1,N2) |f(x)|>M что и тебовалось доказать.

Лемма №3(Лемма Даламбера).

Если при x=x0многочлен f(x)степени n,

не обращаеться в нуль, то существует такое приращение h, в общем случае комплексное, что

|f(x0+h)|<|f(x)|

Доказательство.


По условию f(x0) не равно нулю, случайно может быть так, что x0 является корнем f’(x),..,f(k-1)(x). Пусть k-я производная будет первой, не имеющей x0 своим корнем. Такое k существует т.к.

f(n)( x0)=n!a0

Таким образом


Т.к f(x0) не равно нулю то поделим обе части уравнения на f(x0)

и обозначим

Теперь будем выбирать h. Причем будем отдельно выбирать его модуль и его аргумент.

По лемме№1:

С другой стороны при

(4)

Пусть |h|<min(б1, б2), тогда

Теперь выберем аргумент h так, чтобы ckhkбыло действительным отрицательным числом.

При таком выборе ckhk=-| ckhk| следовательно учитывая (4) получим

Что доказывает лемму Даламбера.

Лемма №5.

Если действительная функция комплексного переменного f(x)непрерывна в замкнутом круге Е, то она ограничена.

Доказательство.

Предположим, что это не верно тогда

получена бесконечная ограниченная последовательность xn,

из нее можно выбрать сходящуюся подпоследовательность

, пусть ее предел равенx0. Так как круг Е замкнут, то x0 пренадлежит Е. Тогда так как f(x)непрерывна

получено противоречие, следовательно неверно, предположение о неограничености f(x).

Лемма №6.

Действительная функция комплексного переменногоf(x)непрерывная в замкнутом круге Е достигает своего минимума и

максимума.

Доказательство.

Докажем это утверждение для максимума.

Так как f(x)непрерывна в Е, то она ограничена и следовательно существует M=sup{ f(x)}. Рассмотрим функцию

.

Если f(x) не достигает своего максимума, то M> f(x) следовательно M-f(x)>0 , следовательно g(x)непрерывна в Е.

Полученое противоречит тому, что M=sup{ f(x)}. Следовательно функция достигает свего максимума. Аналогично доказывается достижение минимума.

Доказательство основной теоремы.

Пусть дан многочлен f(x), очевидно что если an-свободный член, то f(0)= an. Теперь применим лемму№3: возьмем М=|f(0)| =|an| тогда существует такое N, что при |x|>N |f(x)|>M. Теперь возьмем круг Е ограниченный окружностью с центром в нуле и радиусом N, включая границы круга. Так как (по лемме №1) многочлен f(x)-непрерывен, то и |f(x)|-непрерывен внутри замкнутого круга Е, следовательно(по лемме №6), существует такая точка x0, что для всех x из E выполняется неравенство |f(x)|>=|f(x0)|. x0 является точкой минимума для |f(x)| внутри E. Т.к для любого x:|x|>N |f(x)|>M>|f(0)|>|f(x0)| точка x0 является точкой минимуа |f(x)| на всей комплексной плоскости.

|f(x0)|=0 т.к по лемме Даламбера если |f(x0)|¹0 то x0 не точка минимума для |f(x)|Þ x0-корень многочлена f(x).

Теорема доказана.