Жерар Дезарг был архитектором в Лионе. Он автор книги о перспективе (1636 г.). Его брошюра с любопытным названием “Первоначальный набросок попытки разобраться в том, что получается при встрече конуса с плоскостью”, 1639 г.) содержит некоторые из основных понятий синтетической геометрии такие, как точки на бесконечности, инволюции, полярные соотношения,— все это на курьезном ботаническом языке. Свою “теорему Дезарга” о перспективном отображении треугольников он обнародовал в 1648 г. Плодотворность этих идей в полной мере раскрылась лишь в девятнадцатом столетии.
Общий метод дифференцирования и интегрирования, построенный с полным пониманием того, что один процесс является обратным по отношению к другому, мог быть открыт только такими людьми, которые овладели как геометрическим методом греков и Кавальери, так и алгебраическим методом Декарта и Виллиса. Такие люди могли появиться лишь после 1660 г., и они действительно появились в лице Ньютона и Лейбница. Очень много написано по вопросу о приоритете этого открытия, но теперь установлено, что оба они открыли свои методы независимо друг от друга. Ньютон первым открыл анализ (в 1665— 1666 гг.), Лейбниц в 1673—1676 гг., но Лейбниц первый выступил с этим в печати (Лейбниц в 1684—1686 гг., Ньютон в 1704—1736 г. г. (посмертно)). Школа Лейбница была гораздо более блестящей, чем школа Ньютона.
Исаак Ньютон был сыном землевладельца в Линкольншире. Он учился в Кембридже, возможно, что у Исаака Барроу, который в 1669 г. передал ему свою профессорскую кафедру (примечательное явление в академической жизни), так как Барроу открыто признал превосходство Ньютона. Ньютон оставался в Кембридже до 1696 г., когда он занял пост инспектора, а позже начальника монетного двора. Его исключительный авторитет в первую очередь основан на его “Математических принципах натуральной философии” (Philisophiae naturalis principia mathematica, 1687 г.), огромном томе, содержащем аксиоматическое построение механики и закон тяготения—закон, управляющий падением яблока на землю и движением Луны вокруг Земли. Ньютон строго математически вывел эмпирически установленные законы Кеплера движения планет из закона тяготения обратно пропорционально квадрату расстояния и дал динамическое объяснение приливов и многих явлений при движении небесных тел. Он решил задачу двух тел для сфер и заложил основы теории движения Луны. Решив задачу о притяжении сфер, он тем самым заложил основы и теории потенциала. Его аксиоматическая трактовка требовала абсолютности пространства и абсолютности времени.
Открытие Ньютоном флюксий стоит в тесной связи с его изучением бесконечных рядов по “Арифметике” Валлиса. При этом Ньютон обобщил биномиальную теорему на случаи дробных и отрицательных показателей и таким образом открыл биномиальный ряд.
Ньютон писал также о конических сечениях и о плоских кривых третьего порядка. В “Перечислении линий третьего порядка” (Enumeratio linearum tertii ordinis, 1704 г.) он дал классификацию плоских кривых третьей степени на 72 вида, исходя из своей теоремы о том, что каждую кубическую кривую можно получить из “расходящейся параболы” y2 = ax3 + bx2 + cx + d при центральном проектировании одной плоскости на другую. Это было первым важным новым результатом, полученным путем применения алгебры к геометрии, так как все предыдущие работы были просто переводом Аполлония на алгебраический язык Ньютону принадлежит также метод получения приближенных значений корней численных уравнении, который он разъяснил на примере уравнения x3 - 2 x - 5 = 0, получив х »2,09455147.
Готфрид Вильгельм Лейбниц родился в Лейпциге, а большую часть жизни провел при ганноверском дворе, на службе у герцогов, один из которых стал английским королем под именем Георга I.
Кроме философии, он занимался историей, теологией, лингвистикой, биологией, геологией, математикой, дипломатией и “искусством изобретения”. Одним из первых после Паскаля он изобрел счетную машину, пришел к идее парового двигателя, интересовался китайской философией и старался содействовать объединению Германии. Основной движущей пружиной его жизни были поиски всеобщего метода для овладения наукой, создания изобретений и понимания сущности единства вселенной. “Общая наука” (Scientia universalis), которую он пытался построить, имела много аспектов, и некоторые из них привели Лейбница к математическим открытиям. Его поиски “всеобщей характеристики” привели его к занятиям перестановками, сочетаниями и к символической логике; поиски “всеобщего языка”, в котором все ошибки могли выявлялись бы как ошибки вычислений, привели его не только к символической логике, но и к многим новшествам в математических обозначениях. Лейбниц — один из самых плодовитых изобретателей математических символов. Немногие так хорошо понимали единство формы и содержания. На этом философском фоне можно понять, как он изобрел анализ: это было результатом его поисков “универсального языка”, в частности языка, выражающего изменение и движение.
Лейбниц нашел свое новое исчисление между 1673 и 1676 гг. под личным влиянием Гюйгенса и в ходе изучения Декарта и Паскаля. Его подстегивало то, что он знал, что Ньютон обладал подобным методом.
Впервые анализ в форме Лейбница был изложен им в печати в 1684 г. в шестистраничной статье в Acta Eruditorum, математическом журнале, который был основан при его содействии в 1682 г.
Характерно название этой статьи: “Новый метод для максимумов и минимумов, а также для касательных, для которого не являются препятствием дробные и иррациональные количества, и особый вид исчисления для этого”. Изложение было трудным и неясным, но статья содержала наши символы dx, dy и правила дифференцирования, включая d (uv) = udv + vdu и дифференцирование дроби, а также условие dy = 0 для экстремальных значений и d 2y = 0 для точек перегиба. За этой статьей последовала в 1686 г. другая статья с правилами интегрального исчисления в с символом ò (она была написана в форме рецензии).
Нашими обозначениями в анализе мы обязаны Лейбницу, ему принадлежат и названия “дифференциальное исчисление” и “интегральное исчисление”. Благодаря его влиянию стали пользоваться знаком “ = ” для равенства и знаком “ • ” для умножения. Лейбницу принадлежат термины “функция” и “координаты”, а также забавный термин “оскулирующий” (целующий). Ряды
носят имя Лейбница, хотя не он первый их открыл.