Смекни!
smekni.com

Дифференциальные уравнения I и II порядка (стр. 6 из 8)

,

где A – произвольная постоянная. Очевидно,

является его частным решением, и, следовательно, может быть получено при некотором значении
, т.е.

.

Если теперь освободиться от условия фиксирования постоянной

, то получаем, что общее решение исходного уравнения имеет вид

.

В нем второй множитель функция

является, как нетрудно видеть, частным решением при c=1 однородного линейного уравнения
. Первый множитель функция
представляет общее решение дифференциального уравнения u/v(x)=h(x).

Действительно, подставляя в это уравнение u/x(x,c), получаем тождество

.

Таким образом, показано, что общее решение линейного дифференциального уравнения

Представляется в виде y=u(x,c)v(x), где v(x) – частное решение однородного уравнения

, решаемое при c=1,u(x,c) – общее решение уравнения u/v(x)=h(x).

Нетрудно видеть, что в обоих случаях приходится решать уравнение с разделяющимися переменными.

Заметим, что хотя при решении однородного уравнения

бралось частное решение V(x) однородного уравнения v/+g(x)v=0,

Являющегося уравнением с разделяющимися переменными.

На втором этапе определяется решение u(x,c) дифференциального уравнения u/v(x)=h(x),

Также являющегося уравнением с разделяющимися переменными. После их решений общее решение исходного линейного уравнения представляется в виде

Y=u(x,c)v(x).

Пример 1. Решить уравнение

Y/+2y=sinx.

Сначала решаем однородное уравнение v/+2v=0.

Из него получаем

или
.

Интегрируя его левую и правую части, получаем его общий интеграл (решение) вида

.

Полагая в нем c=0 и потенциируя его, получаем следующее его нетривиальное частное решение

.

Далее решаем уравнение вида

или
.

Разнося переменные в разные части уравнения и интегрируя их, получаем общее решение этого уравнения

.

Вычислим интеграл:

.

Рассматривая данное уравнение, как уравнение относительно интеграла, находим его вид

.

Следовательно,

.

Тогда общее решение исходного уравнения будет

.

Предположим теперь, что требуется выделить частное решение, проходящее через точку M(0,0), т.е. решение, удовлетворяющее начальному условию y(0)=0. Для этого подставим значения x=0, y=0 в общее решение и найдем соответствующее значение постоянной c:

, отсюда
.

Искомым частным решением является

.

Пример 2. Решить уравнение

,

являющееся линейным дифференциальным уравнением.

На первом этапе найдем решение соответствующего линейного однородного уравнения

, или
.

Разделяя переменные по разные стороны уравнения, имеем

.

Интегрируя обе части данного уравнения, получаем следующее его частное решение

.

На втором этапе решаем уравнение вида

.

Делая замену

, сокращая обе части уравнения на
и разделяя переменные, имеем du=x2dx.

Интегрируя правую и левую части уравнения, получаем его общее решение

.

Общее решение исходного дифференциального уравнения имеет вид

.

6. Дифференциальное уравнение первого порядка в полных дифференциалах.

Определение. Пусть дифференциальное уравнение первого порядка представлено в виде

M(x,y)dx+N(x,y)dx=0,

Где M(x,y) и N(x,y) – функции двух переменных x и y. Тогда, если левая часть уравнения есть полный дифференциал некоторой функции U(x,y), т.е.

dU(x,y)=M(x,y)dx+N(x,y)dy,

то такое уравнение называется уравнением в полных дифференциалах.

Уравнение в полных дифференциалах кратко можно представить в виде

dU(x,y)=0,

а поэтому общий интеграл (решение) такого уравнения имеет вид U(x,y)=0.

Дифференциальное уравнение такого типа возникает, когда поведение системы подчинено условию сохранения некоторой величины U(энергии, массы, стоимости и т.д.).

Отметим следующий признак, позволяющий определить является ли рассматриваемое уравнение уравнением в полных дифференциалах.

Путьс

dU(x,y)=M(x,y)dx+N(x,y)dy, тогда функции M(x,y) и N(x,y) должны быть для U(x,y) частными производными первого порядка, соответственно, по переменным x и y, т.е.

.

Предполагая функции M(x,y) и N(x,y) непрерывными и имеющими непрерывные частные производные, соответственно, по y и x, т.е. выполнение соотношений

,

из тождества

получаем, что для M(x,y) и N(x,y) должно выполняться условие

.

Полученное условие является не только необходимым, но и достаточным для того, чтобы уравнение M(x,y)dx+N(x,y)dy=0

Было уравнением в полных дифференциалах.

Нахождение общего решения уравнения в полных дифференциалах проводится в два этапа.

На первом этапе функция U(x,y) рассматривается как функция только аргумента x, переменная y получает как бы фиксированное значение

. Тогда соотношению

ставится в соответствие дифференциальное уравнение

.

Пусть его общее решение представляется в виде

.

Но так как решение уравнения зависит от y, то в общем решении постоянная c является функцией y, т.е. c=h(y). Следовательно, общее решение предыдущего дифференциального уравнения, снимая с y условие закрепления его значения, имеет вид

U(x,y)=g(x,y)+h(y).

На втором этапе находится вид функции h(y). Для этого обратимся к соотношению

,

в котором уже закрепляется как бы значение переменной x.

Используя данное соотношение и вид функции U(x,y), получаем дифференциальное уравнение, связывающее переменные h и y:

или
.

Интегрируя это уравнение, находим его общее решение

.

Из

, получаем окончательный вид функции U(x,y), а именно

или

.

В последнем двойном интеграле вместо

можно взять функцию
(т.к.
). Тогда функция U(x,y) получает вид