Так как общее решение исходного дифференциального уравнения записывается в виде U(x,y)=c=const, то, заменяя две постоянных на одну, получаем следующий вид общего решения уравнения
или .Пример 1. Дано дифференциальное уравнение
(6x2y2+6xy-1)dx+(4x3y+3x2y+2y)dy=0.
В нем M(x,y)=6x2y2+6xy-1, N(x,y)=4x3y+3x2y+2y. Из
и тождества ,Следует, что данное уравнение является уравнением в полных дифференциалах. Проведем его решение в два этапа.
На первом решаем уравнение
или dU=(6x2y2+6xy-1)dx,в котором переменная y считается закрепленной. Интегрируя это уравнение, получаем
U(x,y)=2x3y2+3x2y-x+h(y).
На втором этапе определяем вид функции h(y), используя для этого соотношение
и дифференциальное уравнение для h и y
4x3y+3x2+h/(y)=4x3y+3x2+2y или
.Интегрируя последнее, получаем h=y2+c. Общий интеграл исходного уравнения тогда можно записать в виде
2x3y2+3x2y-x+y2=c.
Пример 2. Найти решение уравнения
2xsinydx+(3y2+x2cosy)dy=0.
Проверяем, является ли оно уравнением в полных дифференциалах? Для этого из M(x,y)=2xsiny, N(x,y)=3y2+x2cosy
Находим
.Так как, очевидно, выполняется условие
,то уравнение есть уравнение в полных дифференциалах.
Сначала решаем уравнение
или dU=2xsinydx,считая y постоянной. Интегрирование уравнения дает
U(x,y)=x2siny+h(y).
Затем находим функцию h(y), используя соотношения
, с одной стороны, и , с другой стороны. Соотношения приводят к дифференциальному уравнению или .Интегрируя последнее уравнение, получаем h=y3+c.
Тогда общий интеграл исходного дифференциального уравнения записывается в виде
X2siny+y3+c=0.
Далее рассмотрим понятие интегрирующего множителя. Ранее отмечалось, что уравнение в полных дифференциалах возникает, когда поведение системы сохраняет некоторую величину U, т.е. удовлетворяет соотношению
U(x,y)=c.
Дифференциальным аналогом его является уравнение dU(x,y)=0 или
M(x,y)dx+N(x,y)dy=0,
Где
.Предположим теперь, что частные производные функции U(x,y) представимы в виде
.Тогда соотношению U(x,y)=e будет соответствовать уравнение в полных дифференциалах вида
M(x,y)g(x,y)dx+N(x,y)g(x,y)dy=0.
Если теперь данное уравнение разделить на общий множитель слагаемых g(x,y), то получим уравнение M(x,y)dx+N(x,y)dy=0.
Решение последнего уравнения эквивалентно решению предыдущего, из которого оно получено, однако оно может уже не являться уравнением в полных дифференциалах, также для него возможно будет
.В то же время после умножения его на множитель g(x,y), оно становится уравнением в полных дифференциалах.
Определение. Функция g(x,y) называется интегрирующим множителем дифференциального уравнения
M(x,y)dx+N(x,y)dy=0,
Если после умножения его на эту функцию оно становится уравнением в полных дифференциалах.
Данный способ решения дифференциального уравнения называется методом интегрирующего множителя.
Найдем условие, которому должен подчиняться интегрирующий множитель g(x,y). Из предложения, что уравнение
M(x,y)g(x,y)dx+N(x,y)g(x,y)dy=0
Становится уравнением в полных дифференциалах следует выполнение условия
.Разверернув левую и правую части этого тождества
,заключаем, что функция g(x,y) должна являться решением уравнения
.В общем случае решение данного уравнения вызывает затруднения. Отметим два случая, когда его решение становится проще.
Случай первый. Пусть
.Тогда интегрирующий множитель можно искать в виде функции зависящей только от x.
Действительно, пусть g=g(x). Тогда в виду
; получаем, что искомая функция g(x) является решением дифференциального уравнения или ,интегрируя которое, находим
, т.е. .Второй слуяай относится к аналогичной ситуации, когда
.Тогда интегрирующий множитель ищется в виде функции только от y, т.е. g=g(y).
Аналогично предыдущему, не трудно видеть, что функция g(y) является решением уравнения
и представляется в виде
.Пример 3. Дано уравнение
(y2-3xy-2x2)dx+(xy-x2)dy=0.
Из M(x,y)=y2-3xy-2x2, N(x,y)=xy-x2,
, следует , т.е. уравнение не является в полных дифференциалах.Однако из соотношения
вытекает, что можно найти такой интегрирующий множитель g=g(x), после умножения на который исходное уравнение становится уравнением в полных дифференциалах.
Указанный множитель находим из уравнения
,интегрируя которое получаем
, или g=xc. Так как в качестве множителя достаточно взять одну из функций, то положим c=1 и, тогда,g=x.Умножая исходное уравнение на множитель g=x, получаем
(xy2-3x2y-2x3)dx+(x2y-x3)dy=0,
являющееся уже уравнением в полных дифференциалах. Интегрируя его, находим
, ,затем из U/y=x2y-x3+h/(x) и U/y=N(x,y)=x2y-x3
получаем x2y-x3+h/=x2y-x3, т.е.
и,следовательно,h=c=const. Таким образом, общее решение имеет вид
.Пример 4. Требуется решить уравнение
(2xy2-y)dx+(y2+x+y)dy=0.
Из M(x,y)=2xy2-y, N(x,y)=y2+x+y,
следует .Однако из соотношения
,вытекает, что для исходного дифференциального уравнения существует интегрирующий множитель g=g(y), с помощью которого уравнение становится уравнением в полных дифференциалах.
Интегрирующий множитель находится из уравнения
.Интегрируя его, получаем
.Умножая исходное уравнение на множитель
, приходим к уравнению .Это уравнение является уже уравнением в полных дифференциалах. Решаем его
, ,затем из
и ,