Смекни!
smekni.com

Дифференциальные уравнения I и II порядка (стр. 8 из 8)

получаем

или
.

Интегрируя последнее уравнение, имеем

.

Таким образом, общий интеграл исходного уравнения имеет вид

.

7. Дифференциальные уравнения второго порядка.

Обыкновенное дифференциальное уравнение второго порядка имеет следующий общий вид

F(x,y,y/,y//)=0 или

.

Наше знакомство с дифференциальными уравнениями второго порядка будет ограничено рассмотрением линейного дифференциального уравнения второго порядка с постоянными коэффициентами.

Определение. Линейным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида

y//+py/+qy=h(x),

где p и q – числа,h(x) – некоторая функция от x.

Если в этом уравнении

, то оно называется однородным линейным дифференциальным уравнением второго порядка.

Рассмотрим решение однородного уравнения

.

Этому явлению может быть поставлено в соответствие квадратное уравнение вида

,

Называемое характеристическим. Его корни

, как известно, определяются формулами

.

Возможны следующие три случая для вида корней

этого уравнения: 1) корни уравнения – действительные и различные; 2) корни – действительные и равные; 3) корни уравнения – комплексно-сопряженные. Для каждого из этих случаев однородное дифференциальное уравнение имеет свой вид общего интеграла.

Случай 1. Дискриминант характеристического уравнения положителен, т.е. p2-4q>0. Тогда оба корня

действительные и различные. В этом случае общее решение однородного уравнения имеет вид

,

где c1, c2 – произвольные постоянные.

Действительно, если

, то
,
. Подставляя выражения для y,y/и y// в уравнение получим

.

Случай 2. Дискриминант характеристического квадратного уравнения равен нулю, т.е p2-4q=0.

Тогда оба корня

действительные и равные, т.е.
.

В этом случае общее решение однородного уравнения имеет вид

.

Случай 3. Дискриминант характеристического квадратного уравнения отрицателен, т.е. p2-4q<0.

Тогда говорят, что квадратное уравнение не имеет действительных корней (или что оба корня являются комплексно-сопряженными). В этом случае, обозначая

, общее решение однородного уравнения дается в виде

.

Рассмотрим теперь решение неоднородного уравнения

y//+py/+g(y)&bsol;h(x),

где h(x) – некоторая функция от x.

Пусть в этом уравнении q=0, тогда, используя подстановку y/=z, y//=z/, приходим к решению линейного дифференциального уравнения первого порядка z/+pz=h(x).