Выполнил: ученик 11 Б класса Назаркин Павел Дмитриевич
Муниципальное общеобразовательное учреждение «Лицей №43»
Саранск, 2004
Постановка задачи.
Произвести необходимые расчеты для нахождения минимальной скорости тела, брошенного через прямоугольное препятствие.
Методы выполнения работы.
Для выполнения данной работы проделаем ряд математических вычислений и преобразований с использованием физических формул.
Зная, что траекторией движения тела, является парабола, а также математическую формулу записи данной линии, будем использовать уравнение параболы общего вида в качестве начальных данных поставленной задачи. В выбранной нами прямоугольной системе координат запишем данное уравнение для двух точек, принадлежащих линии движения – начальной точке А и точке В, в которой тело окажется через некоторый промежуток времени t. Решая систему полученных при этом уравнений, путем математических замен и преобразований выведем формулу зависимости движения тела от одной переменной L, т.е. коэффициенты k и b, участвующие в общем виде уравнения параболы, выразим через L. Затем, используя физический закон движения тела, брошенного под углом к горизонту, выразим переменную L через
Решение.
Уравнением линии движения тела, брошенного через прямоугольное препятствие, в общем виде является уравнение параболы :
y=-kx2+b
Введем прямоугольную систему координат и свяжем ее с прямоугольным препятствием, как показано на рисунке.
В данной системе координат уравнение движения тела в точках А и Б примет вид:
h=-ka2+b.
Выразим k и b через одну неизвестную L:
Вычитаем 1)-ое из 2)-ого:
h=k(a2+2aL+L2-a2),
h=k(2aL+L2) ,
Получилось, что уравнение движения зависит только от L:
y=-kx2+b, где коэффициенты k и b имеют вид (*).
Найдем зависимость L от
Из курса физики известно: что движение тела, брошенного под углом горизонта описывается уравнениями
gt2-2Vyt+2h=0.
Мы рассматриваем время движения от точки А до Б, значит
Итак,
Умножив обе части уравнения на g, получим:
Известно, что
С другой стороны tg
Подставив значение tg
V2sin2
Сравнив (1) и (3) получаем, что:
Получили уравнение с двумя неизвестными V и
Пусть z=V2, тогда z cos2
z2 cos2
Получили квадратное уравнение относительно z
Очевидно,
Вместо зависимости V от
Получим
Выразим
Значит,
Т.е.
Таким образом, чтобы найти Vmin и
Умножив обе части уравнения на
Прежде чем возвести обе части в квадрат, сделаем предварительный анализ получившегося уравнения: т.к.
то и
т.е.
Умножив обе части уравнения на (t-1)2, получим