Смекни!
smekni.com

Непрерывные генетические алгоритмы (стр. 2 из 5)

В наиболее часто встречающейся разновидности генетического алгоритма для представления генотипа объекта применяются битовые строки. При этом каждому атрибуту объекта в фенотипе соответствует один ген в генотипе объекта. Ген представляет собой битовую строку, чаще всего фиксированной длины, которая представляет собой значение этого признака.

Кодирование признаков, представленных целыми числами

Для кодирования таких признаков можно использовать самый простой вариант – битовое значение этого признака. Тогда нам будет весьма просто использовать ген определенной длины, достаточной для представления всех возможных значений такого признака. Но, к сожалению, такое кодирование не лишено недостатков. Основной недостаток заключается в том, что соседние числа отличаются в значениях нескольких битов, так например числа 7 и 8 в битовом представлении различаются в 4-х позициях, что затрудняет функционирование генетического алгоритма и увеличивает время, необходимое для его сходимости. Для того, чтобы избежать эту проблему лучше использовать кодирование, при котором соседние числа отличаются меньшим количеством позиций, в идеале значением одного бита. Таким кодом является код Грея, который целесообразно использовать в реализации генетического алгоритма. Значения кодов Грея рассмотрены в таблице ниже:

Двоичное кодирование Кодирование по коду Грея
Десятичный код Двоичное значение Шестнадцатеричное значение Десятичный код Двоичное значение Шестнадцатеричное значение
0 0000 0h 0 0000 0h
1 0001 1h 1 0001 1h
2 0010 2h 3 0011 3h
3 0011 3h 2 0010 2h
4 0100 4h 6 0110 6h
5 0101 5h 7 0111 7h
6 0110 6h 5 0101 5h
7 0111 7h 4 0100 4h
8 1000 8h 12 1100 Ch
9 1001 9h 13 1101 Dh
10 1010 Ah 15 1111 Fh
11 1011 Bh 14 1110 Eh
12 1100 Ch 10 1010 Ah
13 1101 Dh 11 1011 Bh
14 1110 Eh 9 1001 9h
15 1111 Fh 8 1000 8h

Таблица 1. Соответствие десятичных кодов и кодов Грея.

Таким образом, при кодировании целочисленного признака мы разбиваем его на тетрады и каждую тетраду преобразуем по коду Грея.

В практических реализациях генетических алгоритмов обычно не возникает необходимости преобразовывать значения признака в значение гена. На практике имеет место обратная задача, когда по значению гена необходимо определить значение соответствующего ему признака.

Таким образом, задача декодирования значения генов, которым соответствуют целочисленные признаки, тривиальна.

Кодирование признаков, которым соответствуют числа с плавающей точкой

Самый простой способ кодирования, который лежит на поверхности – использовать битовое представление. Хотя такой вариант имеет те же недостатки, что и для целых чисел. Поэтому на практике обычно применяют следующую последовательность действий:

Разбивают весь интервал допустимых значений признака на участки с требуемой точностью.

Принимают значение гена как целочисленное число, определяющее номер интервала (используя код Грея).

В качестве значения параметра принимают число, являющиеся серединой этого интервала.

Рассмотрим вышеописанную последовательность действий на примере:

Допустим, что значения признака лежат в интервале [0,1]. При кодировании использовалось разбиение участка на 256 интервалов. Для кодирования их номера нам потребуется таким образом 8 бит. Допустим значение гена: 00100101bG (заглавная буква G показывает, что используется кодирование по коду Грея). Для начала, используя код Грея, найдем соответствующий ему номер интервала:

. Теперь посмотрим, какой интервал ему соответствует… После несложных подсчетов получаем интервал
. Значит значение нашего параметра будет
.

Основные генетические операторы

Как известно в теории эволюции важную роль играет то, каким образом признаки родителей передаются потомкам. В генетических алгоритмах за передачу признаков родителей потомкам отвечает оператор, который называется скрещивание (его также называют кроссовер или кроссинговер). Этот оператор определяет передачу признаков родителей потомкам. Действует он следующим образом:

из популяции выбираются две особи, которые будут родителями;

определяется (обычно случайным образом) точка разрыва;

потомок определяется как конкатенация части первого и второго родителя.

Рассмотрим функционирование этого оператора:

Хромосома_1: 0000000000
Хромосома_2: 1111111111

Допустим разрыв происходит после 3-го бита хромосомы, тогда

Хромосома_1: 0000000000 >> 000 1111111 Результирующая_хромосома_1
Хромосома_2: 1111111111 >> 111 0000000 Результирующая_хромосома_2

Затем с вероятностью 0,5 определяется одна из результирующих хромосом в качестве потомка.

Следующий генетический оператор предназначен для того, чтобы поддерживать разнообразие особей с популяции. Он называется оператором мутации. При использовании данного оператора каждый бит в хромосоме с определенной вероятностью инвертируется.

Кроме того, используется еще и так называемый оператор инверсии, который заключается в том, что хромосома делится на две части, и затем они меняются местами. Схематически это можно представить следующим образом:

000 1111111 >> 1111111 000

В принципе для функционирования генетического алгоритма достаточно этих двух генетических операторов, но на практике применяют еще и некоторые дополнительные операторы или модификации этих двух операторов. Например, кроссовер может быть не одноточечный (как было описано выше), а многоточечный, когда формируется несколько точек разрыва (чаще всего две). Кроме того, в некоторых реализациях алгоритма оператор мутации представляет собой инверсию только одного случайно выбранного бита хромосомы.

Схема функционирования генетического алгоритма

Теперь, зная как интерпретировать значения генов, перейдем к описанию функционирования генетического алгоритма. Рассмотрим схему функционирования генетического алгоритма в его классическом варианте.

Инициировать начальный момент времени

. Случайным образом сформировать начальную популяцию, состоящую из k особей.

Вычислить приспособленность каждой особи

и популяции в целом
(также иногда называемую термином фиттнес). Значение этой функции определяет насколько хорошо подходит особь, описанная данной хромосомой, для решения задачи.

Выбрать особь

из популяции.

С определенной вероятностью (вероятностью кроссовера

) выбрать вторую особь из популяции
и произвести оператор кроссовера
.

С определенной вероятностью (вероятностью мутации

) выполнить оператор мутации.
.

С определенной вероятностью (вероятностью инверсии

) выполнить оператор инверсии
.

Поместить полученную хромосому в новую популяцию

.

Выполнить операции, начиная с пункта 3, k раз.

Увеличить номер текущей эпохи

.

Если выполнилось условие останова, то завершить работу, иначе переход на шаг 2.

Теперь рассмотрим подробнее отдельные этапы алгоритма.

Наибольшую роль в успешном функционировании алгоритма играет этап отбора родительских хромосом на шагах 3 и 4. При этом возможны различные варианты. Наиболее часто используется метод отбора, называемый рулеткой. При использовании такого метода вероятность выбора хромосомы определяется ее приспособленностью, то есть

. Использование этого метода приводит к тому, что вероятность передачи признаков более приспособленными особями потомкам возрастает. Другой часто используемый метод – турнирный отбор. Он заключается в том, что случайно выбирается несколько особей из популяции (обычно 2) и победителем выбирается особь с наибольшей приспособленностью. Кроме того, в некоторых реализациях алгоритма применяется так называемая стратегия элитизма, которая заключается в том, что особи с наибольшей приспособленностью гарантировано переходят в новую популяцию. Использование элитизма обычно позволяет ускорить сходимость генетического алгоритма. Недостаток использования стратегии элитизма в том, что повышается вероятность попадания алгоритма в локальный минимум.