В однородной проводящей среде значение объемной плотности заряда
при квазистационарной ( ) электропроводности близко к нулю, поэтому процесс электрической поляризации металла в таких условиях будет протекать в локально электронейтральной среде, когда . Физически поле E(lj) обусловлено законом сохранения импульса в системе “электронный газ – ионный остов” кристаллической решетки проводника, где при наличии тока “центры масс” положительных и отрицательных зарядов в атомах смещаются относительно друг друга, создавая тем самым деформационную поляризацию среды. При этом индуцируемое в проводнике электрическое поле уравновешивает поле сторонних сил и в указанных условиях результирующая сила, действующая на дрейфующие со скоростью электроны проводимости, равна нулю, что и определяет линейную зависимость j ~ E. Аналогией этому может служить, например, установившееся движение твердой частицы при падении ее в вязкой жидкости в поле силы тяжести.Целесообразно отметить, что вывод об отсутствии в однородном проводнике с током объемного электрического заряда следует из предположения справедливости при электропроводности закона Ома, когда j ~ E. При этом игнорируется воздействие собственного магнитного поля тока
на движущиеся носители заряда посредством магнитной компоненты силы Лоренца , величина которой в такой ситуации является квадратичной функцией тока. Здесь - вектор магнитной индукции, зависящий от соответствующей напряженности, m - относительная магнитная проницаемость среды, m0 - магнитная постоянная. Это обстоятельство должно приводить к нарушению локальной электронейтральности среды ( ) за счет ухода вглубь проводника части электронов проводимости, где их кулоновское отталкивание компенсируется действием магнитного поля тока. Данный вопрос подробно рассмотрен в работах [9, 10], поэтому ограничимся только этим замечанием.Однако именно таким нарушением электронейтральности можно объяснить наблюдаемую в условиях, близких к изотермическим, квадратичную нелинейность вольтамперной характеристики медного проводника на постоянном токе [6], аппроксимируемую строгой аналитической зависимостью
, в которой квадратичное по току слагаемое заметно проявляет себя при плотности тока j ~ 108 А/м2 и более. Поэтому при обычной плотности тока j << 108 А/м2 эта нелинейность не может существенным образом повлиять на результаты наших рассуждений, что подтверждают также и выводы проведенного выше анализа уравнения энергетического баланса процесса электропроводности (5).Сопоставляя соотношение (6) с законом Ома
, получаем формулу указанного выше динамического смещения “центров масс” разноименных зарядов , (7)вызывающего деформационную электрическую поляризацию металлического проводника с током. Интересно, что последнее соотношение (7) аналогично по виду формуле для среднего значения “длины свободного пробега” электронов проводимости в металле:
, где vT - их средняя тепловая скорость. Таким образом, процесс электрической проводимости порождает в металле электронейтральные микрообласти ( ), образно говоря, “полярные молекулы”, с дипольным моментом , ориентированным коллинеарно направлению тока.Фундаментальность величины динамического смещения
, по сути свой “длина релаксации” заряда в проводнике, состоит в том, что на участках проводника такой длины падение электрического напряжения (разность электрических потенциалов) (8)равно отношению объемных плотности электрической энергии (3) к плотности носителей заряда в металле. Данный результат нетривиален, поскольку он в явном виде раскрывает физическую сущность разности электрических потенциалов в проводнике, представляющей собой последовательно ориентированную совокупность “элементарных ячеек” удельной электрической энергии (8), созданных током в локально электронейтральной среде.
Численные оценки параметров “полярных молекул”, отвечающих соотношениям (7, 8), дают по порядку величины их максимальный, ограниченный токами разупрочнения реального металла (
109 А/м2 ) размер вдоль направления дипольного момента 10–7 м, и, соответственно, значения момента ~ 10–26 Кл×м и напряжения 10–6 В.Согласно выражениям (6-8), физически естественно ожидать, что даже при реализации тем или иным способом условий, близких к изотермическим при пропускании тока, электрическое поле в металле должно сопровождаться упорядоченной механической деформацией (удлинением вдоль тока) проводника, связанной с полем линейной зависимостью. Справедливость такого вывода подтверждена экспериментом [6], где феномен E(lj) условно назван электроупругим эффектом.
Заключение.
Из результатов проведенных рассуждений непосредственно следует, что поле электрической поляризации металла порождается упорядоченным механически напряженным состоянием кристаллической решетки проводника, возникающим в процессе электрической проводимости. При этом описываемые законами электропроводности
и поляризации электрические векторы напряженности и смещения сущностно различны, соответствуют и находятся в том же отношении друг с другом, как и растягивающие усилия и смещения частиц среды, а объединяющее их соотношение по сути дела есть прямой аналог закона Гука в теории упругости. Следовательно, объемные плотности электрической и упругой энергий в проводящей среде, обусловленные нетепловым действием электрического тока, принципиально равны по величине, а физические механизмы их реализации тождественны.Подводя итог, с необходимостью приходим к выводу, что нетепловое действие электрического тока фундаментально проявляет себя именно в законе Ома электропроводности металлов, где
реализуется неразрывным единством двух физических явлений: гальваномеханической деформацией металла lj и вызванной этим явлением его электрической поляризацией, величина напряженности поля E(lj) которой прямо пропорциональна удлинению проводника в таких условиях. При этом энергетически процесс электропроводности сопровождается не только выделением тепловой энергии по закону Джоуля-Ленца wT(j), но и созданием дополнительной потенциальной энергии we(j) за счет работы сторонних сил, запасенной в кристаллической решетке металла при изменении ее конфигурации, которая, в соответствии с соотношением (8), определяет физическую природу падения электрического напряжения в проводнике с током. Более подробно углубление в рамках классической электродинамики физических представлений о процессе стационарной электрической проводимости в металле и их современное полевое развитие рассматривается в работе [11].Список литературы
1. Wertheim G. Untersuchungen über die Elasticität // Ann. Phys. und Chem. - 1848. - Bd. 11/11. - S. 1-114; cм. также в кн. Белл Дж.Ф. Экспериментальные основы механики деформируемых твердых тел. Часть I. Малые деформации- М.: Наука, 1984. - 559 с.
2. Спицын В.И., Троицкий О.А. Электропластическая деформация металлов. - М.: Наука, 1985. - 160 с.
3. Троицкий О.А., Баранов Ю.В., Авраамов Ю.С., Шляпин А.Д. Физические основы и технологии обработки современных материалов. В 2-х томах. ”Институт компьютерных исследований”, 2004.
4. Климов К.М., Новиков И.И. Особенности пластической деформации металлов в электромагнитном поле // ДАН СССР. - 1980. - Т. 253, № 3. - С. 603-606.
5. Сидоренков В.В. О механизме текстурирования металлов под действием электрического тока // ДАН СССР. - 1989. Т. 308, № 4. - С. 870-873.
6. Корнев Ю.В., Сидоренков В.В., Тимченко С.Л. О физической природе закона электропроводности металлов // Доклады РАН. - 2001. - Т. 380, № 4. - С. 472-475.
7. Марахтанов М.К., Марахтанов А.М. Волновая форма электронного переноса теплоты в металле // Вестник МГТУ им. Н.Э. Баумана. Сер. “Машиностроение”. - 2001. - № 4. - С. 84-94.
8. Зоммерфельд А. Электродинамика. - М.: ИЛ, 1958. - 501 с.
9. Мартинсон М.Л., Недоспасов А.В. О плотности заряда внутри проводника с током // Успехи физ. наук. - 1993. - Т. 163, № 1. - С. 91-92.
10. Сидоренков В.В. Об электромагнитной квадратичной нелинейности проводящей магнитоупорядоченной среды // Радиотехника и электроника. - 2003. - Т. 48, № 6. - С. 746-749.
11. Сидоренков В.В. Развитие физических представлений о процессе электрической проводимости в металле // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. - 2005. - № 2. - С. 35-46.