При исследовании этой последовательности, как и последовательности метода итераций, встают два вопроса:
Можно ли процесс вычисления чисел xn продолжать неограниченно, т. е. будут ли числа xn принадлежать отрезку [a, b] ?
Если процесс (3.5) бесконечен, то как ведёт себя последовательность {xn} при n®¥ ?
При анализе этих вопросов предположим, что корень x=c является внутренней точкой отрезка [a, b] (a<c<b), а функция f(x) дважды дифференцируема на данном отрезке, причём её производные удовлетворяют неравенствам:
| f ¢(x)|³m>0, | f ¢¢(x)|£M, xÎ[a, b], (4.5)
и докажем следующую теорему.
Теорема о сходимости метода касательных.
Если функция f(x) удовлетворяет условиям, сформулированным п.1., то найдётся такое d: 0<d£min(c–a, b–c), что при любом выборе начального приближения на отрезке [c-d, c+d] Ì [a, b] существует бесконечная итерационная последовательность (3.5) и эта последовательность сходится к корню c.
Доказательство. В силу предположения о дифференцируемости функции f(x) и не равенстве нулю её производной f ¢(x) уравнение f(x)=0 эквивалентно на отрезке [a, b] уравне- нию:
x=j(x), j(x)=x– f (x)/ f ¢(x) (5.5)
так что корень x=c исходного уравнения является одновременно корнем уравнения (5.4).
Исследуем возможность отыскания этого корня с помощью итераций.
Вычислим производную функции j(x):
(6.5)и оценим полученное выражение. Согласно неравенствам (4.5):
(7.5)Для дальнейшей оценки |
| воспользуемся непрерывностью функции f(x) и равенством её нулю в точке x= с: (8.5)Положим e=m2/(2M)
Тогда в силу (8.5) для данного e можно указать такое d: 0<d£ min (c–a, b–c), что для всех
выполняется неравенство: (9.5)Учитывая это, получим:
(10.5)Таким образом, функция j(x) удовлетворяет на отрезке [c-d, c+d] Ì [a, b] условию Липшица с постоянной a=0.5<1. Это означает, что уравнение (5.5) можно решать методом итераций: при любом выборе нулевого приближения x0 на отрезке [c-d, c+d] существует бесконечная последовательность {xn}, xn+1=j(xn), n=0, 1, 2, …, сходящаяся к корню x=c.
Теперь нам остаётся заметить, что итерационной последовательностью для уравнения (5.5), сходимость которой мы только что установили, является последовательность (3.5) метода касательных. Теорема доказана.
Требование близости нулевого приближения x0 к искомому корню c является существенным для метода касательных. На рис.2.5 изображён график, где х0 выбрано неправильно, то есть расстояние сх0>ас, так как ас<bс. В результате чего х1 не принадлежит отрезку [a, b], и на этом процесс построения рекуррентной последовательности метода касательных обрывается.
Таким образом, до начала расчётов по данному методу для выбора нулевого приближения х0 нужно знать область локализации искомого корня х=с. Если известен в общих чертах график функции f(x), то его легко определить по этому графику. В случае необходимости можно сделать несколько шагов по методу вилки. Затруднения, связанные с предварительным исследованием уравнения, вполне окупаются высокой скоростью сходимости метода.
рис. 2.5 Случай, когда процесс построения последовательности {xn} обрывается из-за плохого выбора нулевого приближения
6. Первые приближения для метода касательных
Первые нулевые приближения для метода Ньютона, для итерационной последовательности, можно так же найти другим путём. Если нам известно, что функция f(x) на отрезке [a, b] непрерывна и дважды дифференцируема, и имеет ровно один корень, тогда можно взять за нулевое приближение значение одного из концов отрезка [a, b] в зависимости от знака второй производной, иначе при первом же приближении можно попасть за пределы отрезка [a, b] (рис. 1.6).
То есть можно сформулировать следующее правило:
Пусть в точках a и b функция f(x) имеет различные знаки, причём на отрезке [a, b] вторая производная положительна. Тогда за начальное приближение х1 надо выбирать ту из точек a или b, в которой функция f(x) принимает положительное значение. Если же на отрезке [a, b] вторая производная отрицательна, то за начальное приближение x1 надо выбирать ту точку, в которой функция f(x) принимает отрицательное значение.
7. Метод секущих
В методе Ньютона (касательных) требуется вычислять производную функции, что не всегда удобно. Можно заменить производную функции первой разделённой разностью, найденной по двум последним итерациям, т. е. заменить касательную секущей. Тогда вместо процесса
получим: (1.7)для начала процесса необходимо задать х0 и х1 (рис. 1.7). Такие процессы, где для вычисления очередного приближения надо знать два предыдущих, называют двух шаговыми.
Эти изменения сильно меняют характер итераций. Например, сходимость итераций может быть немонотонной не только вдали от корня, но и малой окрестности корня. Скорость сходимости также изменяется. Его можно оценить, разлагая все функции в (1.7) по формуле Тейлора с центром
. Получим с точностью до бесконечно малых более высокого порядка: (2.7)Решение этого рекуррентного соотношения естественно искать в виде аналогичном методу Ньютона:
. Подставляя эту форму в соотношение (2.6), получим:ab=1, b2 - b - 1 = 0 (3.7)
Только положительный корень b квадратного уравнения (3.6) соответствует убыванию ошибки, т. е. сходящемуся процессу. Следовательно, в методе секущих
,в то время как в методе Ньютона ошибка убывает быстрей (соответствуя b=2). Но в методе на каждой итерации надо вычислять и функцию, и производную, а в методе секущих – только функцию. Поэтому при одинаковом объёме вычисления в методе секущих можно сделать вдвое больше итераций и получить более высокую точность. Что является более приемлемым при численных расчётах на ЭВМ, чем метод касательных.
В знаменателе формулы (1.7) стоит разность значений функции. Вдали от корня это несущественно; но вблизи корня, особенно корня высокой кратности, значения функции малы и очень близки. Возникает потеря значащих цифр, приводящая к «разболтке» счёта. Это ограничивает точность, с которой можно найти корень; для простых корней это ограничение невелико. Приводить к общему знаменателю уравнение (1.7) не следует: может увеличится потеря точности в расчётах.
От «разболтки» страхуются так называемым приёмом Гарвика. Выбирают не очень малое e, ведут итерации до выполнения |xn+ 1-xn|<e и затем продолжают расчёт до тех пор, пока | xn+ 1-xn | убывают. Первое же возрастание обычно означает начало «разболтки»; тогда расчёт прекращают и последнюю итерацию не используют.
8. Метод хорд, или линейной аппроксимации
Рассмотрим задачу решения уравнения (1.1) методом хорд.
Этот метод состоит в следующем. График функции f(x) заменяется её хордой, т. е. отрезком соединяющий концевые точки графика функции f(x): точки (a, f(a)) и (b, f(b)). Абсцисса х1 точки пересечения этой хорды с осью Ох и рассматривается, как первое приближение искомого корня (рис 1.8). Далее берётся тот из отрезков [a, x1] и [x1, b], на концах которого, функция f(x) принимает значения разного знака (далее будет показано, что при сделанных предположениях f(x) ¹ 0 и, следовательно, такой отрезок всегда существует), и к нему применяется тот же приём; получается второе приближение корня х2 и т. д. В результате образуется последовательность хn, n=1, 2, … которая, как это будет показано, при сделанных ограничениях на функцию f(x), сходится к корню уравнения f(x).
Легко получить рекуррентные формулы для указанных чисел хn, n=1, 2,… Уравнение прямой, проходящее через крайние точки графика функции f(x) имеет вид:
(1.8)Обозначим его правую часть через l(x), т. е. Запишем уравнение в виде:
y = l(x)
Найдём абсциссу х1 точки пересечения прямой (1.8) с осью Ох, т. е. Решим уравнение l(x)=0; получим:
(2.8)Легко убедится, что:
a < x1 < b (3.8)
Это, например, следует из строгой монотонности и непрерывности функции l(x) и того, что на концах отрезка [a, b] она принимает значения разного знака: l(a)=f(a) и l(b)=f(b).
Аналогично находим
n=1, 2, … (4.8)