МК: РгС>РгD (01001101>01001100) переход на МК1
МК1: сдвигаем мантиссу Х1 вправо на 4 разр. получаем 000000001100011001011101 и увел. порядок Х1 на 1 получаем 1001101 переход на МК
МК: РгС=РгD (01001101=01001101)
Порядки выравненны.
Сложение мантисс:
ТгЗн1 ¹ ТгЗн2 переход на М3
М3: ТгЗн1 ¹ 0 Þ РгВ =
(00110010 111111110011100110100010); РгСм=РгА + РгВ + 1 = 01011011 110100100010000010000110;См[0] = 0 Þ переход на М1
М1: РгСм [ 1 ¸ 7]: = Сч1 [1 ¸ 7] = 1001101;
РгСм [0] :== если Тг3н1=0 то 0;
ШИВых: = РгСм = 0 1001101 110100100010000010000110 = 0 4D D22086 ;
КОНЕЦ.
Y2 = 0 1001100 110100101110011011100011 = 0 4С D2E6E3
X2 = 0 1001101 110001100101110110100111 = 0 4D C65DA7
Выравнивание порядков:
РгD > РгС Þ переход на МК2
МК2: сдвигаем мантиссу Y2 вправо на 4 разр. получаем 000011010010111001101110; уменьшаем порядок Х2 на 1 получаем 1001100; РгD = РгС
Порядки выравненны.
Сложение мантисс:
ТгЗн1 = ТгЗн2 Þ См = РгА + ргВ = 00000000 110100111000110000010101; переход на М1
М1: РгСм [ 1 ¸ 7]: = Сч1 [1 ¸ 7] = 1001110;
РгСм [0] :== если Тг3н1=0 то 0;
ШИВых: = РгСм = 0 1001101 110100111000110000010101 = 0 4D D38C15;
КОНЕЦ.