Всякий непрерывный оператор ограничен.
Если А – ограниченный оператор, действующий из Е в Е1, и в пространстве Е выполнена первая аксиома счётности (если каждая точка топологического пространства имеет счётную определяющую систему окрестностей, т.е. систему окрестностей точки, обладающую следующими свойствами: каково бы ни было открытое множество G, содержащее эту точку, найдётся окрестность из этой системы, целиком лежащая в G), то оператор А непрерывен.
То есть, в пространствах с первой аксиомой счётности ограниченность линейного оператора равносильна его непрерывности.
Если Е и Е1 – нормированные пространства, то условие ограниченности оператора А, действующего из Е в Е1, можно сформулировать так: оператор а называется ограниченным, если он переводит всякий шар в ограниченное множество. В силу линейности оператора А это условие можно сформулировать так: А ограничен, если существует такая постоянная С, что для всякого
.Наименьшее из чисел С, удовлетворяющих этому неравенству, называется нормой оператора А и обозначается
. Справедлива так же такая теорема:Теорема: Для любого ограниченного оператора А, действующего из нормированного пространства в нормированное,
= .Определение: Пусть А и В – два линейных оператора, действующих из линейного топологического пространства Е в пространство Е1. Назовём суммой А+В оператор С, ставящий в соответствие элементу х
Е элементy=Ax+By
E1.С=А+В – линейный оператор, непрерывный, если А и В непрерывны. Область определения Dc есть пересечение DA
DB областей определения оператора А и оператора В.Если Е и Е1 – нормированные пространства, а операторы А и В ограничены, то С тоже ограничен, причём
.Это следует из:
.Определение: Пусть А и В – линейные операторы, причём А действует из пространства Е в Е1, а В действует из Е1 в Е2. Произведением ВА операторов А и В называется оператор, ставящий в соответствие элементу х
Е элементz=B(Ax)
из Е2. Область определения DC оператора С=ВА состоит из тех х
DA, для которых Ax DB. Ясно, что оператор С линеен. Он непрерывен, если А и В непрерывны.Если А и В – ограниченные операторы, действующие в нормированных пространствах, то и оператор С=ВА ограничен, причём
Это следует из:
Обратный оператор. Обратимость
Пусть А – оператор, действующий из Е в Е1, и DA – область определения, а RA – область значений этого оператора.
Определение: Оператор А называется обратимым, если для любого
уравнениеимеет единственное решение.
Если А обратим, то каждому
можно поставить в соответствие единственный элемент , являющийся решением уравнения . Оператор, осуществляющий это соответствие, называется оператором обратным к А и обозначается .Рассмотрим оператор, переводящий конечномерное пространство в конечномерное. Выше было сказано, что он задаётся матрицей коэффициентов. Таким образом, оператор обратим, если обратима матрица коэффициентов, которой он задаётся. А матрица обратима лишь в том случае, если её определитель не равен нулю. То есть матрицы, которые имеют ненулевой определитель, задают обратимый оператор, переводящий конечномерное пространство в конечномерное.
Теорема: Оператор
, обратный к линейному оператору А, также линеен.Теорема Баноха об обратном операторе: Пусть А – линейный ограниченный оператор, взаимно однозначно отображающий банахово пространство Е на банахово пространство Е1. Тогда обратный оператор
тоже ограничен.Теорема: Пусть ограниченный линейный оператор А0, отображающий банахово пространство Е на банахово пространство Е1, обладает ограниченным обратным
и пусть – такой ограниченный линейный оператор, отображающий Е в Е1, что . Тогда оператор А= отображает Е на Е1 и обладает ограниченным обратным.Теорема: Пусть Е – банахово пространство, I – тождественный оператор в Е, а А – такой ограниченный линейный оператор, отображающий Е в себя, что норма
. Тогда оператор существует, ограничен и представляется в виде .Резольвента линейного оператора
Определение и примеры резольвенты оператора
Рассмотрим оператор А, действующий в (комплексном) линейном топологическом пространстве Е, и уравнение
Ах=
Решения этого уравнения зависят от вида оператора
. Имеется три возможности:уравнение Ах=
имеет ненулевое решение, т.е. есть собственное значение для А; оператор при этом не существует;существует ограниченный оператор
, т.е. есть регулярная точка;оператор
существует, т.е. уравнение Ах= имеет лишь нулевое решение, но этот оператор не ограничен.Введём следующую терминологию. Оператор
называется резольвентой оператора А. Число мы назовём регулярным для оператора А, действующего в линейном топологическом пространстве Е, если оператор определён на всём Е и непрерывен, множество таких будем называть резольвентным множеством и обозначать . Совокупность всех остальных значений называется спектром оператора А, будем обозначать . Спектру принадлежат все собственные значения оператора А, так как если х=0 при некотором , то не существует. Их совокупность называется точечным спектром. Остальная часть спектра, т.е. совокупность тех , для которых существует, но не непрерывен, называется непрерывным спектром. Итак, каждое значение является для оператора А или регулярным, или собственным значением, или точкой непрерывного спектра. Возможность наличия у оператора непрерывного спектра – существенное отличие теории операторов в бесконечномерном пространстве от конечномерного случая.В конечномерном же случае имеется лишь две первые возможности. Причём,
называется собственным значением оператора, если данное уравнение имеет ненулевое решение. Совокупность всех собственных значений образуют спектр оператора, а все остальные значения называются – регулярными. Иначе, говоря , есть регулярная точка, если оператор обратим.