Умножая (1) на f(x) и отнимая Bn(x), получим, что
Так как f(x) непрерывна в замкнутом интервале [0,1], и, значит, ограничена:
А это выражение на основании (2):
Окончательно:
Заметим, что если Pn(x) равномерно стремится к f(x) при
Поэтому т. Вейерштрасса состоит так же в том, что всякая непрерывная в конечном интервале [a,b] функция f(x) может быть разложена в равномерно сходящийся при
1.4. Вторая теорема Вейерштрасса.
Она относится к периодическим непрерывным функциям:
Если F(t)- непрерывная функция с периодом 2
II. Круг идей П.Л. Чебышева.
Пусть даны замкнутый (конечный или бесконечный) интервал [a,b] числовой оси и две вещественные непрерывные в [a,b] функции f(x) и S(x). Составим выражение:
В частном случае, когда S(x)=1, m=0 и интервал [a,b] конечен, поставленная задача переходит в задачу о наилучшем приближении в пространстве С заданной функции с помощью многочлена степени n.
Будем полагать, что m=n-k, кроме того, если интервалом [a,b] является вся числовая ось, мы будем предполагать, что
2.1 Обобщённая теорема Валле-Пуссена.
Если многочлены
Значение этой теоремы состоит в том, что она даёт возможность получить для погрешности наилучшего приближения некоторую оценку снизу.
Теорема существования.
Среди функций Q(x) существует по крайней мере одна, для которой HQимеет наименьшее значение.
Т.о., пусть Н
2.2. Теорема Чебышева.
Функция Р(х), которая из всех функций вида Q(x) наименее уклоняется в [a,b] от функции f(x), единственна.
Эта функция вполне характеризуется таким своим свойством, если она приведена к виду
Теорема Чебышева показывает, что существует единственная функция P(x), дающая наилучшее приближение к данной функции f(x) (т.е. наименее отклоняется от f(x)) в данном нормированном пространстве.
Случай аппроксимации многочленами.
Особенно важным является частный случай, когда S(x)=1, m=0 и интервал [a,b] конечен. В этом случае мы получаем теорему:
многочлен n-й степени P(x), который наименее уклоняется (в метрике пространства С) от заданной непрерывной функции f(x), единственен и вполне характеризуется тем, что число последовательных точек интервала [a,b], в которых разность f(x)-P(x) принимает с чередующимися знаками значение
2.3 Переход к периодическим функциям.
Допустим, что
Т.к.