тригонометрическая сумма n-го порядка
Одну и ту же функцию f(x) в (0,
Если f(x) доопределить чётным образом, то получим ряд только по cos кратных дуг;
Если f(x) доопределить нечётным образом, то получим ряд только по sin.
Пример:f(x)=x на
|
Для sin аналогично, только f(x)- нечётная.
2.4 Обобщение теоремы Чебышева.
Мы рассмотрели алгебраические и тригонометрические многочлены на некотором интервале и сформулировали для них теорему Чебышева об аппроксимации этих функций. Теперь рассмотрим произвольную, непрерывную на [a,b] вещественную функцию.
Рассмотрим систему вещественных непрерывных функций f1(x),f2(x)...fn(x) в конечном или бесконечном интервале [a,b], которая удовлетворяет условиям Хаара: единственность полинома наименьшего уклонения для каждой функции f(P) будет тогда и только тогда, когда каждый полином F(P,x)
Такую систему называют системой Чебышева относительно интервала [a,b].
Лемма: Пусть x1,x2...xn-1произвольно взятые различные точки из интервала [a,b]. В таком случае существует (и с точностью до постоянного множителя только 1) нетривиальный полином
Других нулей у этого полинома нет, и, если т. xk лежит внутри [a,b], то при переходе через неё полином F(x,
Обобщение: Если S- есть система Чебышева относительно интервала [a,b], а f(x)- произвольная непрерывная в [a,b] вещественная функция, то полином F(x,
Теперь мы можем рассматривать функции в произвольных нормированных пространствах.
III. Методы аппроксимации
3.1 Приближение функций многочленами.
Алгебраическим многочленом степени n называется функция
Алгебраические многочлены являются простейшими функциями. Они непрерывны при любом x. Производная многочлена- так же многочлен, степень которого на единицу меньше степени исходного. Так, если степень n, то
В школьном курсе математики рассматриваются функции f(x)=ax, f(x)=logax, f(x)=sin(x) и др., изучаются их свойства, строятся графики. Однако вопрос о методах вычисления значений названных функций при заданных значениях аргумента не рассматривается. Вместе с тем, он очень важен. Познакомимся с методами приближения функций, или методами аппроксимации.
3.2 Формула Тейлора.
Рассмотрим функцию y=f(x), определённой на некотором промежутке, содержащим т.а. Предположим, что эта функция имеет производные (n+1)-го порядка.
Уравнение касательной к графику функции в т. х=а имеет вид:
Многочлен 1-й степени:
Можно найти многочлен 2-й степени, а именно:
Естественно ожидать, что многочлен, имеющий при х=а первые n производных, одинаковых с соответствующими производными функции f(x) в той же точке, при х, близких к а, будет хорошо приближать f(x). В этом случае вместо f(x) можно рассматривать указанный многочлен, а для приближённого вычисления f(x) при заданном х достаточно вычислить его значения при том же х.
Этот многочлен получают в результате решения следующей задачи: для функции f(x), имеющей в окрестности т. х=а производные до порядка n+1 включительно, найти многочлен Рn(x) степени не выше n такой, что Pn(a)=f(a); Pn’(a)=f’(a); Pn’’(a)=f’’(a);... Pn(n)(a)=f(n)(a).
Эти равенства означают, что в т. х=а значения многочлена Рn(x) и функции y=f(x), а так же их соответствующих производных совпадают. Многочлен Pn(x) представим в виде:
......................................
Подставляя в формулы значения х=а, получим:
Из этих равенств находим, что
Получаем искомый многочлен:
Обозначим через rn(x) разность между функцией f(x) и многочленом Pn(x).
Величину rn(x) называет остаточным членом. Видно, что при тех же значениях х, для которых rn(x) достаточно мал, вместо f(x) можно рассматривать многочлен Pn(x).
Оценим величину остаточного члена rn(x). Запишем его в виде
При фиксированных значениях а и х функция Q(x) имеет определённые значения, которые обозначаются через Q.
Рассмотрим вспомогательную функцию переменной t (a<t<x)