Из формулы функции F(t) видно, что F(x)=0 и F(a)=0. Воспользуемся свойством дифференцируемой функции:
Если дифференцируемая функция f(x) обращается в нуль при х=а и х=b, f(a)=0, f(b)=0, (a
Геометрически это означает, если в т. а и b f(a)=0 и f(b)=0, то
|
f©
0 a c b X
Корнем или нулём функции называют такое значение аргумента х0 , при котором функция f(x0)=0.
С учётом этого понятия указанное свойство можно сформулировать так: между двумя различными корнями дифференцируемой функции находится хотя бы один корень её производной (т. Ролля).
Поскольку F(x)=0 и F(a)=0, то к функции F(t) можно применить свойство:
Так как с заключено между а и х, то его можно представить в виде
Говорят, что это равенство выражает остаточный член формулы в форме Лагранжа. Подставим его в формулу:
Если а=0, то
Формула Тейлора для функций sinx, cosx, ex
Выведем формулы Тейлора для элементарных функций f(x)=sinx, f(x)=cosx, f(x)=ex.
Рассмотрим функцию f(x)=sinx. Найдём производную n+1- го порядка.
2.Аналогично находим формулу Тейлора для f(x)=cosx.
3.Рассмотрим функцию f(x)=ex.
4.Рассмотрим функцию f(x)=(a+x)n ,
Эту формулу называют биномом Ньютона. Отметим частные случаи:
n=2 (a+x)2=a2+2ax+x2
n=3 (a+x)3=a3+3a2x+3ax2+x3
Приближение функций sinx, cosx, ex алгебраическими многочленами.
В формуле Тейлора для sinx положим n=2m-1
Остаточный член этой формулы имеет вид:
Оценим его модуль. Поскольку
Полагая n=2m в формуле для cosx, аналогично:
Например, для приближённой формулы
В случае функции f(x)=ex, получаем:
В общем случае, отбросив остаточный член, получим приближённую формулу:
Ряд Тейлора.
Обратимся к формуле (1). Разность между функцией f(x) и её многочленом в правой части называют отклонением, которое выражается остаточным членом rn(x).Если в формуле рассматривать всё больше и больше членов, то может оказаться, что отклонение стремится к нулю, но не для всякой функции и не для любого значения х. Однако существует широкий класс функций, для которых остаточный член действительно стремится к нулю при
Число слагаемых является неограниченным. Выражение в правой части формулы называют рядом Тейлора, а функцию f(x)- суммой этого ряда.
Ряд Тейлора можно записать в таком виде:
Условие сходимости:
Для разложения f(x) в степенной ряд (т.е. в ряд Тейлора), необходимо и достаточно, чтобы предел остаточного члена формулы Тейлора был равен нулю:
Степенной ряд сходится при любых х или говорят, что его областью сходимости является промежуток
cos(-x)=cosx, f(x)=cosx- чётная функция.
Примеры разложения функций в степенные ряды.
Степенной ряд
Мы получили разложение функции