Частоту максимального усиления wк можно определить по известному углу высокодобротного полюса Qк = wкТ (4.6) передаточной функции Hi(Z).
Расчет масштабного множителя по (4.15) применяется чаще при каскадной реализации, когда масштабирование можно выполнить внутри каждого звена.
Динамический диапазон ЦФ
Динамический диапазон цепи определяется границами уровня выходного сигнала. Для цифровой цепи, функционирующей в системе чисел с фиксированной запятой, динамический диапазон равен
[D; 1,0],
где D - значение младшего разряда кодовых слов.
Эффективность использования динамического диапазона оценивается с одной стороны - вероятностью перегрузки сумматоров, с другой - величиной помехозащищенности сигнала на выходе цепи относительно уровня шумов квантования на выходе цепи
(4.16)где Rш - помехозащищенность сигнала,
- дисперсия шума - усредненная энергия сигнала,Рс, Рш - мощности сигнала и шума.
Масштабирование сигнала позволяет добиться высокой эффективности использования динамического диапазона цепи.
Предельные циклы
Предельными циклами называется ложный сигнал, который возникает на выходе рекурсивного ЦФ, если на вход цепи поступает сигнал в виде константы. Причиной появления предельных циклов является процедура квантования сигнала в умножителях, охваченных обратной связью.
Пример. Определить форму предельных циклов заданной цепи (рис. 4.4), если сигнал на выходе умножителя округляется на уровне десятых долей, а сигнал на входе в момент t=0 прерывается, т.е. наступает пауза. Состояние цепи к моменту t=0 характеризуется условием: y(-1) = 0,5.
Решение.
Разностное уравнение цепи: y(n) = x(n) + 0,8y(n-1)
Решение разностного уравнения.
n=0 : y(0) = 0 + 0,8 * 0,5 = 0,4
n=1 : y(1) = 0 + 0,8 * 0,4 = 0,32 » 0,3
n=2 : y(2) = 0 + 0,8 * 0,3 = 0,24 » 0,2
n=3 : y(3) = 0 + 0,8 * 0,2 = 0,16 » 0,2
n=4 : y(4) = 0 + 0,8 * 0,2 = 0,16 » 0,2
............................................................
Следовательно y(n) = {0,4; 0,3; 0,2; 0,2; 0,2; ... }, т.е. сигнал "зависает" на уровне 0,2. Если знак коэффициента 0,8 заменить на противоположный, то форма предельных циклов принимает вид знакопеременной последовательности y(n) = {-0,4; 0,3; -0,2; 0,2; -0,2; ... }.
В цепях высокого порядка предельные циклы имеют сложную форму и определяются, при необходимости, моделированием фильтра на ЭВМ.
Ложные сигналы в системах передачи информации не допустимы, поэтому применяются различные способы борьбы с предельными циклами. Можно, например, подмешивать к сигналу на входе цепи псевдослучайную последовательность нулей и единиц на уровне младшего разряда кодовых слов. Но в этом случае необходимо увеличить на единицу разрядность кодовых слов, чтобы помехозащищенность сигнала оставить на прежнем уровне.