Р(A)=m/n. (2.1)
В приведенном выше примере с колодой карт имеется n=52 равновозможных события: вынут одну какую-нибудь карту. Событию A–тому, что вынут короля, благоприятствуют m=4события: B1–вынут короля пик, B2–короля треф, B3–короля бубен, B4–короля червей. И только такие события Bi благоприятствуют событию A. При этом Aесть объединение событий Bi: A=U Bi и события Biи Bjне пересекаются: Bi∩Bj=
,i≠j. Поэтому и принимают Р(А)=m/n=4/52=1/13.Данное определение вероятности через благоприятствующие равновозможные непересекающиеся события называют часто классическим определением вероятности. Оно подтверждается на практике в виде закона больших чисел. Он проявляется следующим образом. Если сделать большое число n* испытаний, в каждом из которых может появиться событие A, то в результате оказывается, что число m*появлений события A оказывается как правило очень близким к величине Р(A), то есть выполняется с вероятностью очень близкой к единице – практически обязательно, с большой степенью точности приближенное равенство
m*/n* ≈m/n=Р(A) (2.2)
Условной вероятностью события А по событию В называют величину Р(А|В), которая дает равенство Р(А∩В)=Р(A|B)·P(B).Смысл этого определения таков. Условная вероятность оценивает шансы осуществления события А, когда известно, что произошло событие В.
События А и В называются независимыми, если Р(A|B)=P(A). Тогда Р(А∩В)=Р(A)·P(B). Иначе говоря, события А и В независимы, когда вероятность осуществления события А не зависит от того, осуществилось или нет событие В. И наоборот, вероятность осуществления события В не зависит от осуществления события А.
Например, пусть бросают две не связанные друг с другом игральные кости. Пусть событие А–на первой кости выпало 4 очка. Событие В–на второй кости выпало 2 очка. Тогда Р(А)=1/6,Р(В)=1/6. События А и В естественно полагать независимыми. Стало быть, полагаем Р(А|B)=P(A), P(B|A)=P(B) иP(А∩В)=P(A)·P(B)=1/6·1/6=1/36. То есть вероятность события С=А∩В – на первой кости выпало 2 очка и при этом на второй кости выпало 4 очка равна 1/36.
Несколько событий A1,A2,…,Akназываются независимыми в совокупности, если Р(∩Ai)=Р(A1)·Р(A2)·…·Р(Ak). Важно заметить, что из попарной независимости всех событий АiиAj, i=1,…,k, j=1,…,k, i j, вообще говоря, не следует независимость событий A1,A2,…,Akв совокупности. В этом можно убедиться на конкретном примере.
Подчеркнем еще раз, что физической основой для теории вероятностей является следующее статистическое свойство устойчивости частот. Буквой Аобозначим случайное событие, связанное с некоторым повторяющимся опытом. Пусть опыт повторяется n*раз при одинаковых условиях. Пусть *–число появлений событий А. Относительная частота
появления событий А определяется формулой (2.3)Если неограниченно увеличивать число повторений опыта
, то относительная частота будет устойчиво приближаться к некоторой фиксированной величине Р(А) и отклоняться от нее тем меньше и реже, чем больше n*. Эта величина и является вероятностьюP события А. Если в теории вероятность Р(А) определена правильно, то оказывается, что теоретическое число Р(А) совпадает с описанным выше практическим пределом. Это обстоятельствои позволяет численно оценивать вероятность случайного события в теории.3.Формула Бейеса.
Пусть мы знаем вероятности событий А и В: Р(А) и Р(В). И пусть мы знаем условную вероятность события А по В: Р(A|B). Как найти условную вероятность P(B|A). На этот вопрос отвечает формула Бейеса.
Р(B|A)=P(A|B)·P(B)/P(A) (3.1)
Разумеется этой формулой можно пользоваться только при условии, что Р(А) 0.
Формула Бейеса выводится из следующих равенств
Р(В А)=Р(В|A)·P(A) (3.2)
Р(A B)=Р(A|B)·P(B) (3.3)
причем
Р(В А)=Р(A B) (3.4)
так как пересечение событий В и А очевидно не зависит от порядка, в котором записаны А и В, т.е. В А=A B. В случае Р(А)=0 принимаю обычно, что Р(В|A) есть величина неопределенная.
4.Формула полной вероятности.
Пусть имеем полную группу из n попарно непересекающихся событий
. То есть , (4.1) , , (4.2)Пусть мы знаем условные вероятности некоторого события А по Еi: Р(А|Ei) и вероятности Р(Ei), i=1,…,n. Справедлива следующая формула полной вероятности для события А
Р(А)=Р(A|E1)·P(E1)+…+P(A|En)·P(En) (4.3)
Доказательство этой формулы вытекает из следующих равенств
P(A)=P( )=P(A ( Ei))=P(A E1)+…+P(A En)=
=Р(A|E1)·P(E1)+…+P(A|En)·P(En) (4.4)
Из элементарной формулы Бейеса (3.1) и формулы полной вероятности (4.3) вытекает следующая более полная формула Бейеса
Р(Еi|A)=P(A|Ei)·P(Ei)/(Р(A|E1)·P(E1)+…+P(A|En)·P(En)) (4.5)
5.Пример задачи для формулы полной вероятности.
Задача 5.1.
Пусть имеем три урны с шарами. В первой урне 7 белых и 3 черных шара. Во второй урне 7 белых и 7 черных шаров. В третьей урне 3 белых и 7 черных шаров. Наугад выбрали одну урну. Из этой урны наугад вынули шар.
Какова вероятность, что вынули белый шар?
Решение:
Пусть событие А – вынули белый шар, событие Ei – вынули шар из i-той урны, i=1,2,3. Вероятности P(Ei)полагаем равными, т.е. Р(Ei)=1/3. Вероятность Р(A|E1)=7/10, вероятность Р(А|E2)=7/14=1/2, вероятность Р(А|E3)=3/10. Таким образом по формуле полной вероятности (4.3) имеем
Р(А)=Р(A|E1)·Р(E1)+Р(A|E2)·Р(E2)+Р(A|E3)·Р(E3)=
=(1/3)·(7/10+5/10+3/10)=(1/3)·15/10=1/2 (5.1)
Ответ: Вероятность вынуть белый шар равна ½.
6.Пример задачи для формулы Бейеса.
Задача 6.1.
Пусть имеем те же урны с теми же наборами шаров, как и в задаче (5.1). Снова из выбранной наугад урны выбрали наугад шар. Оказалось, что вынули черный шар.
Какова вероятность, что его вынули из третьей урны?
Решение:
Пусть В – событие, состоящее в том, что вынули черный шар. События Ei те же, что и в решении задачи (5.1). Интересующая нас вероятность есть условная вероятность Р(E3|B). По формуле Бейеса (4.5) имеем
Р(Е3|B)=P(B|E3)·P(E3)/(P(B|E1)·P(E1)+P(B|E2)·P(E2)+P(B|E3)·P(E3)) (6.1)
У нас: Р(Ei)=1/3, i=1,2,3, P(B|E1)=3/10, P(B|E2)=1/2, P(B|E3)=7/10. Таким образом, получаем