Таким образом, уравнения системы (5) описывают свойства и поведение в материальных средах статического магнитного поля, структурно реализуемого двумя векторными полевыми компонентами: магнитной напряженностью
и векторным магнитным потенциалом . Объективность существования именно такой структуры магнитного поля иллюстрируется видом уравнений системы (5), где главным и однозначным аргументом реальности данного физического факта служит соотношение баланса для потока магнитной энергии: , (6)описывающее энергетику процесса магнитной поляризации материальной среды. Как видим, перенос извне в данную точку пространства потока магнитной энергии (левая часть соотношения (6)) действительно осуществляется двумя полевыми компонентами магнитного поля посредством потокового вектора
. При этом намагничивание материальной среды реализуется двумя способами: как посредством воздействия на среду поля магнитной напряженности (второе слагаемое правой части соотношения (6)), так и за счет процесса электрической проводимости в среде (первое слагаемое правой части (6)).Полученные выше системы уравнений электростатического (1) и магнитостатического (5) поля позволяют теперь, по существу формально, из (1c), (1d) и из (5c), (5d) составить еще одну систему полевых уравнений, в которых рассматриваются свойства статического вихревого поля ЭМ векторного потенциала с электрической
и магнитной компонентами, реализация которых физически обусловлена процессами поляризации материальных сред:(a)
, (b) , (7)(c)
, (d) .Здесь дивергентные уравнения (7b) и (7d) математически это калибровки, обеспечивающие чисто вихревой характер компонент поля ЭМ векторного потенциала. Объективность существования именно такой структуры указанного поля иллюстрируется видом уравнений системы (7) и следующим из них соотношением баланса:
, (8)описывающим, судя по размерности потокового вектора
, процесс передачи материальной среде момента ЭМ импульса.В качестве наглядного примера серьезного прогресса в концептуальном развитии основ теории электричества рассмотрим использование представленных здесь результатов для изучения процесса стационарной электропроводности в металле - уникальном объекте, где указанный процесс порождает все обсуждаемые здесь явления электромагнетизма [3]. Стремление описать эту конкретную ситуацию естественно скажется на облике полученных систем уравнений и на их основе соотношений баланса, но их математическая структура и базовое физическое содержание при этом, безусловно, останутся неизменными.
Так, например, при неизменной структуре уравнений электростатики (1) соотношение баланса электрической энергии (2) ввиду особой специфики физического механизма электрической поляризации проводника действием электрического тока [3] примет несколько иной вид:
,где
– постоянная времени релаксации заряда в проводящей среде. Однако внешний вид систем уравнений ЭМ поля (3) и магнитостатики (5) и следствий из них (4) и (6) останутся неизменными и не потребуют комментариев, поскольку тождественны обсуждаемой ситуации. Напротив, в случае использования системы (7) для описания статического поля ЭМ векторного потенциала, созданного в проводнике постоянным током, роторные уравнения (7a) и (7с) этой системы определенно модифицируются и представятся как:(a)
, (b) , (9)(c)
, (d) .Отсюда непосредственно получаем и модификацию соотношения (8) баланса передачи момента ЭМ импульса проводнику с током
. (10)Как видим, процесс электрической проводимости имеет полевое континуальное воплощение, что является принципиальным дополнением и расширением узких рамок формализма традиционных локальных представлений о данном явлении. Безусловным аргументом справедливости такого вывода служат потоки электрической (2) и магнитной (6) энергий, ЭМ энергии компенсации джоулевых потерь (4) и потока момента ЭМ импульса (10), поступающие в проводник в указанном процессе. Важно здесь и то, что все эти потоки неразрывно связаны между собой и существуют одновременно, и именно их совокупность обуславливает феномен электропроводности материальных сред.
Таким образом, в общем виде и на конкретном примере установлено существование в Природе единого электродинамического поля, базирующегося на поле ЭМ векторного потенциала с взаимно ортогональными электрической
и магнитной компонентами, которое своим существованием реализует функционально связанные с ним и другие составляющие: ЭМ поле с компонентами электрической и магнитной напряженности, электрическое поле с компонентами и , и, наконец, магнитное поле с компонентами и . Анализ полученных здесь систем полевых стационарных уравнений электромагнетизма убедительно показал, что структура поля из двух векторных взаимно ортогональных компонент – это объективный способ существования составляющих единого электродинамического поля , принципиальная возможность их распространения посредством потока соответствующей физической величины.Список литературы
1. Матвеев А.Н. Электродинамика. М.: Высшая школа, 1980. 383 с.
2. Зоммерфельд А. Электродинамика. М.: ИЛ, 1958. 504 с.
3. Сидоренков В.В. // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2005. № 2. С. 35-46; 2006. № 1. С. 28-37.