{f2(y)/j2(y)}dy+{j1(x)/f1(x)}dx=0
∫{f2(y)/j2(y)}dy+∫{j1(x)/f1(x)}dx=C – общий интеграл 3).Линейные диффер. ур.y’+p(x;y)=Q(x) – общий вид, Если Q(x)º0, то линейное уравнение y’+p(x;y)=0.
Методы решений: 1) Метод вариации постоянной;
2)Решение этого ур будем искать как y=U(x)V(x) (диффер-ем) dy/dx=UdV/dx+VdU/dx (подставим) UdV/dx+VdU/dx+PUV=Q
U(dV/dx+PV)+VdU/dx=Q, dV/dx+PV=0, dV/V=-PdxlnC1+lnV=-∫Pdx
V= C1e–∫Pdxи подставляем в UdV/dx+VdU/dx+PUV=Q
V(x)= e–∫Pdx, где ∫Pdx - какая-нибудь первообразная
V(x)dU/dx=Q(x), dU/dx=Q(x)/V(x), U=∫Q(x)/V(x)dx+C, y=V(x) ∫ Q(x)/V(x)dx+CV(x)
Уравнения приводящиеся к линейным(Бернулли)
y’+P(x)y=Q(x)yn, P(x) и Q(x) – непрерывные фун. от x (или пост.) n¹0,1. Это ур-е наз ур Бернулли, приводится к линейному следующим преобразованием.
Разделим на yn с наибольшим значением n, получим
(y–n)y’+P(y–n+1)=Q, Сделаем далее замену z=(y–n+1), тогда dz/dx=(-n+1)(y-n)y’. Подставляя эти значения в ур-е
(y–n)y’+P(y–n+1)=Q, будем иметь линейное ур-е
dz/dx=(1-n)Pz=(1-n)Q
Найдя его общий интеграл и подставив вместо z выражение (y–n+1), получим общий инт. ур.Бернулли
Однородные ур-я
Ур-е вида y’=f(x;y) наз-ся однор.ур-ем, если фун. f(x;y)
–однородная нулевого измерения или порядок однородности равен 0, т.е. f(tx;ty)=(t0)f(x;y).
Фун. f(x;y) наз-ся однор.ур-ем k-го порядка однородности, если вып. усл. f(tx;ty)=(tk)f(x;y); f(tx;ty)=(t0)f(x;y), где k=0; f(tx;ty)=f(x;y), где t=1/x; f[(1/x)*x;(1/y)*x)]=f(1;y/x), обозначим y/x=U(x) след-но y=U(x)x, y’=U’x+U подставим в исходное ур-е U’x+U=f(1;U), U’x+U=j(U) (dU/dx)*x=j(U)-U, dx/x=dU/(j(U)-U), ln|x|=[∫dU/(j(U)-U)] + CÞ вместо U подст. y/x и получим общий инт.
Замеч. Однор.ур. может выгл. так M(x;y)dx+N(x;y)dy=0 если обе фун. M(x;y) и N(x;y) однородные k-го порядка.
Дифф. ур. 2-го порядка
Общий вид дифф. ур.2-го порядка F(x;y;y’;y’’)=0. Решением урав. наз. любая фун.y=j(x), кот. обращает это ур. в тождество F(x;j(x);j’(x);j’’(x))=0
Общим решением наз. ур. вида y=(x;C1;C2), кот. яв-ся 1)реш. при любых знач. C1,C2,Cn; 2)для любых x0,y0,y0’,y0’’ можно найти С10,С20, при кот. заданная фун. y=j(x1; С10;С20) будет удов. заданному нач. ур-ю, т.е.j(x0;С10;С20)=y0 ,
j’(x0; С10;С20)=y0’
Линейные дифф. ур-я 2-го порядка
Общий вид линейн. диф. ур. 2-го порядка y’’+P(x)y’+q(x)y=f(x). (1)
Если f(x)=0 следовательно y’’+P(x)y’+q(x)y=0 (2)
– линейное однородное урав.
Структура реш. лин. одн.ур.2-го пор.
1)Если 2 реш. ур (2) y1(x) и y2 (x) – линейно-независ, т.е. нельзя одну вырозить через др, т.е.
y1(x)/y2(x)¹const, то общим решением ур (2) y=C1y1+C2y2
2) Если известно одно реш. y1, то др. найдем по форм. y2= y1∫[(e–∫P(x)dx)]/(y12)dx. Общее реш. y=C1y1+C2y2
3) y1 находим подбором.
Структура общего реш. неоднородного ур.
1)Общее реш.y(x)=y(-)+y*, где y(-)=C1y1+C2y2 общее реш.(2), y*- нек. частное реш. самого ур.
2)Метод вариации произ. постоянной
y*= C1(x)y1+C2(x)y2
3)Для нахождения C1(x) и C2(x) созд.
сист. ур-ий. 0 y2
C1’(x)y1+ C2’(x) y2=0 Þ C1’(x)= f(x) y2’C1’(x)y1’+ C2’(x) y2’=f(x) y1 y2
y1’ y2’
Þ C1(x)=∫(--)/(--)dx
y1 0
C2’(x)= y1’ f(x) Þ C2(x)=∫(--)/(--)dx
y1 y2
y1’ y2’
Лин. дифф. ур-ия со спец. правой частью.
Рассмотрим случай: y’’+py’+qy=f(x), p,q – числа. y=c1y1+c2y2+y*, где y1, y2 – два лин-но незав. реш.
(1) y’’+ py’+qy=0 – лин. однород дифф. ур-ие 2ого порядка.
y=ekxk2+pk+q=0 – характерист. ур-ие ур-ия (1).
Рассмотрим 3 случия:
1. D>0, k1,2=(-p±Ö(p2-4q))/2, k1¹k2y1=ek1x, y2=ek2x.
Т.к. y1/y2¹const, то y=c1 ek1x+c2 ek2x.
2. D=0 k1,2=-p/2
y1=e-px/2, y2=y1∫(e--∫pdx)/y12dx=e-px/2, y=e-px/2(c1+c2x).
3.Когда корни комплексные, т.е. D<0, k1,2=a±bi, y1=eaxCosbx, y2=eaxSinbx, y1/y2¹const, y=eax(c1Cosbx+c2Sinbx)
Неоднородные ур-ия со спец. правой частью.
1. f(x)=Pn(x)eax 1) a - не явл-ся корнем хар. ур-ия
y*=(A0xn+A1xn-1 ++...+An)=Qn(x)eax.
a - однократный корень y*=xQn(x)eax.
3) a - двукрат. корень y*=x2Qn(x)eax.
2. f(x)=p(x)eaxCosbx+q(x)eaxSinbx
1) a+bi – не корень y*=U(x)eaxCosbx+V(x)eaxSinbx.
2) a+bi – корень y*=x[U(x)eaxCosbx+V(x)eaxSinbx].
3. f(x)=MCosbx+NSinbx
1)bi – не корень, y*=ACosbx+BSinbx.
2)bi – корень, y*=x(ACosbx+BSinbx).
РЯДЫ
Числовые ряды. Основные определения.
Пусть дана бесконечная послед-ть чисел U1, U2...Un,... Выражение U1+U2+...+Un+... наз-ся числовым рядом,
U1, U2...Un – члены ряда.
Сумма конечного числа n первых членов ряда наз-ся
n-ой частичной суммой ряда: Sn= U1+U2+...+Un.
Если сущ-ет конечный предел limn®¥Sn=S, то этот предел наз суммой ряда.
Если предел limn®¥Sn равен ¥ или не сущ-ет, то говорят , что ряд расходится.
Если сущ-ет предел limn®¥Sn, то ряд сходится.
Некоторые очевидные свойства числовых рядов:
1)Теорема 1. На сходимость ряда не влияет отбрасывание конечного числа его членов.
Док-во: Sn – сумма n первых членов ряда, Ck – сумма k отброшенных членов, Dn-k – сумма членов ряда, входящих в сумму Sn и не входящих в Ck. Тогда имеем: Sn=Ck+Dn-k, где Ck – постоянное число, не зависящее от n. Из последнего соотношения следует, что если сущ-ет limDn-k, то сущ-ет и limSn; если сущ-ет limSn, то сущ-ет limDn-k, а это доказ-ет справедливость теоремы.
2)Теорема 2. Если ряд a1+a2+...(1) сходится, и его сумма равна S, то ряд ca1+ca2+...(2), где c=const, также сходится и его сумма равна сS.
Док-во: обозначим n-ю частичн сумму ряда (1) через Sn, а ряда (2) – через Dn. Тогда Dn=ca1+...+can=c(a1+...+an)=cSn. Отсюда ясно, что передел n-ой частичной суммы ряда (2) сущ-ет, т.к.
lim Dn=lim(cSn)=climSn=cS. ч.т.д.
3)Теорема 3. Если ряды a1+a2+...(5) и b1+b2+...(6) сходятся, и их суммы, соответственно, равны S1и S2, то ряды (a1+b1)+(a2+b2)+...(7) и (a1–b1)+(a2–b2)+...(8) также сходятся, и их суммы, соответственно, равны S1+S2 и
S1–S2.
Док-во: док-ем сходимость ряда (7). Обозначая его n-ую частичную сумму через Dn, а n-е частичные суммы рядов (5) и (6) соответственно через S1n и S2n, получим: Dn=(a1+b1)+...+(an+bn)=(a1+...+an)+(b1+...+bn)=S1n+S2n. Переходя к в этом равенстве к пределу при n®¥:, получим limDn=lim(S1n+S2n)= limS1n+limS2n=S1n+S2n.
Т.о., ряд (7) сходится и его сумма равна S1n+S2n.
4)Необходимый признак сходимости ряда. Если ряд сходится, то limUn=0 n®¥.
Док-во: пусть ряд U1+U2+...+Un+... сходится, т.е. limSn=Sn®¥, тогда имеет место равенство limSn-1=S.
limSn–limSn-1=0, lim(Sn–Sn-1)=0. Но Sn–Sn-1=Un следов-но limUn=0 ч.т.д.
Достат. призаки сходимости знакоположит. рядов.
1)Признак сравнения. Пусть дан ряд U1+U2+...+Un+...(1), S1n; V1+V2+...+Vn+...(2) S2n; Известно,что Vn³Un при n³N0.
если ряд (2) сходится, то ряд (1) также сходится;
если ряд (1) расходится, то ряд (2) расходится.
Док-во: Из сходимости ряда (2) следует, что $limS2n=S. S1n=U1+U2+...+UN0+UN0+1+...+Un=SN0+VN0+1+...+Vn. limS1n=lim(SN0+Dn-N0)=SN0+D. S1n – возраст. послед-ть, ограниченная числом SN0+D => $limS1n=Sn1.
2) Предельный признак сравнения. Если сущ-ет limUn/Vn=L, но L¹0,¥ при n®¥, то ряды ведут себя одинаково.
3) Признак Даламбера.Если $lim(Un+1/Un)=L(2) при n®¥, то: 1) ряд сходится, если L<1; 2) расходится, если L>1. Док-во: 1) пусть L<1. Рассмотрим число q, удовл. соотнош L<q<1. Из определения предела и соотношения (2) следует, что для всех n, n³N, будет иметь место нер-во (Un+1/Un)<q (2’). Действительно, т.к. величина Un+1/Unстремится к пределу L, то разность м/у этой величиной и числом L м.б.сделана (начиная с некоторого номера N) по абсолютному значению меньше любого положит числа, в частности, меньше, чем q–L, т.е.
|Un+1/Un – L|<q–L. из последнего нер-ва и следует нер-во (2’). Записывая нер-во (2’) для различных значений n, начиная с номера N, получим UN+1<qUN,UN+2<qUN+1< q2UN
Рассмотрим теперь два ряда:
U1+U2+...+UN+Un+1+... (1)
UN+qUN+q2UN+... (1’). Ряд (1’) есть геом прогрессия с положит знаменат q<1. Следоват-но, этот ряд сходится. Члены ряда (1), начиная с UN+1, меньше членов ряда (1’), следоват-но, ряд (1) сходится. Ч.т.д. 2) Пусть L>1. тогда из равенства lim(Un+1/Un)=L следует, что, начиная с некот. N, т.е. для n³N, будет иметь место нер-во (Un+1/Un)>1, или Un+1>Un для всех n³N. Но это озн-ет, что члены ряда возрастают, начиная с номера N+1, и поэтому общий член ряда не стремится к нулю. Значит, ряд расходится.
4)Признак Коши. Если для ряда с положит членами limnÖUn=L, то: 1) ряд сходится, если L<1; 2)расходится, если L>1.