Смекни!
smekni.com

Ряды (стр. 4 из 4)

Док-во: 1) пусть L<1. Рассмотр число q, L<q<1. Начиная с некот n=N, будет иметь место соотношение

|nÖUn–L|<q–L; осюда следует, что nÖUn<q или Un<qn для всех n³N. Рассмотрим теперь два ряда: U1+U2+...+UN+UN+1+... (1) и qN+qN+1+qN+2+... (1). Ряд (1) сходится, т.к. его члены обр-ют убыв. геом прогр. Члены ряда (1), начиная с UN, меньше членов ряда (1). Значит, ряд (1) сходится. 2) Пусть L>1. Тогда, начиная с некот номера n=N, будем иметь: nÖUn>1 или Un>1. но если все члены рассматр ряда, начиная с UN, больше 1, то ряд расходится, т.к. его общий член не стремится к нулю.

5)Интегральный признак сходимости. Имеем ряд ¥ån=1Un, где члены ряда убывают Un>Un+1>0. Есть фун f(x)>0, хÎ[1;¥] непрерывная и убывающая и такая, что при целых значениях х=n значение фун-и f(n)=Un.

Если не собственный интеграл ¥ò1f(x)dx – сходиться, то ряд сходится. Если не собственный интеграл ¥ò1f(x)dx – расходиться, то ряд расходится.

Знакочередующиеся ряды.

Под знакочередующимся рядом понимается ряд, в котором члены попеременно то положительны, то отрицательны.

Т.Лейбница: Если члены знакочередующегося ряда убывают по абсолютной величине U1>U2>U3… и предел его общего члена при n®¥ равен 0

(Lim n®¥ Un=0), то ряд сходится, а его сумма не превосходит первого члена: U1³S.

Д: Рассмотрим последовательность частичных сумм четного числа членов при n=2m:

S2m=(U1-U2)+(U3-U4)+…+(U2m-1-U2m). Эта последовательность возрастающая и ограниченная. На основании признака существования придела последовательность S2m имеет предел Limm®¥S2m=S. Переходя к пределу в неравенстве S2m<U1 при m®¥, получим, что U1³S. Рассмотрим последовательность частичных сумм нечетного числа членов при n= 2m+1. Очевидно, что S2m+1=S2m+A2m+1; Поэтому учитывая необходимый признак сходимости ряда, Limm®¥S2m+1=

=Limm®¥S2m+ Limm®¥ А2m+1=S+0=S. Итак, при любом n (четном и нечетном) Limn®¥Sn=S, т.е. ряд сходится.

Знакопеременные ряды.

Пусть U1+U2+U3….+Un+ знакопеременный ряд (*), в котором любой его член Un может быть как положительным, так и отрицательным.

Т.(Достаточный признак сходимости знакопеременного ряда): Если ряд, составленный из абсолютных величин членов данного ряда (*) и если ряд ¥ån=1½Un½; |U1|+|U2|+…+|Un|+…(1), сходится и наз абс. сходящимся. Обратное утверж не справедливо.

Д: Обозначим Sn+ и Sn- суммы абсолютных величин членов данного ряда (*), входящих со знаком плюс и минус. Тогда частичная сумма данного ряда Sn1=Sn+-Sn- , а ряда составленного из абсолютных величин его членов Sn2= Sn++Sn- . По условию ряд (1) сходится, значит сущ-т конечный предел Limn®¥Sn2=S. Последовательности Sn+ и Sn- являются возрастающими и ограниченными (Sn+≤ SSn- ≤ S ), значит существуют пределы

Limn®¥Sn+ и Limn®¥Sn-, и соответственно предел частичной суммы данного ряда

Limn®¥Sn1=Limn®¥Sn+ -Limn®¥Sn- , т.е. ряд (*) сходится.·

Если ряд |U1|+|U2|+…+|Un|+…сходиться, то ряд U1+U2+U3….+Un+ наз абс. сходящимся.

Если ряд U1+U2+U3….+Un+ сходиться, а ряд |U1|+|U2|+…+|Un|+…расходиться, то ряд U1+U2+U3….+Un+ наз усл. сходящимся.

Св-ва абс сход рядов: Если ряд U1+U2+U3….+Un+ абс сходиться, то на сходимость не влияет перестановка членов ряда и группировка.

Степенные ряды.

C0+C1X+C2X2+…+CnXn..-степенной ряд (*)

Св-ва: 1)Т. Абеля: 1)Если степенной ряд сходится при значении X=X0≠0, то он сходится и, притом абсолютно, при всех значениях Х таких что |Х|<|X0|, 2)Если степенной ряд расходится при Х=Х1, то он расходится при всех значениях Х таких что |Х|>|Х1|.

Д: 1)По условию ряд (*) сходится при Х=Х0≠0, следовательно, выполняется необходимый признак сходимости Limn®¥Un=Limn®¥CnX0n=0. Значит последовательность |CnX0n| Оганичена, т.е. сущ. Такое число М>0, что для всех n выполняется неравенство |CnX0n|<M. Рассмотрим ряд, составленный из абсолютных величинчленов ряда(*)

0|+ |C1X0||Х/X0|+…+ |CnX0n||X/X0|n+…(1). Члены ряда (1) меньше соответствующих членов ряда М+М|Х/X0|+…+М|X/X0|n+… представляющего геометрический ряд, к-й сходится, когда его знаменатель q=|X/X0|<1, т.е. при|X|<|X0|, на основании признака сравнения ряд (*) сходится. 2)Предположим противное, т.е. при|X|>|X1| ряд (*) сходится. Тогда по доказанному выше он должен сходится и в точке Х1 (т.к. |X|>|X1|), что противоречит условию.·

Из теоремы Абеля следует, что сущ. Такое число R≥0, что при │Х│<R ряд сходится, а при │Х│>R – расходится. Число R получило название радиуса сходимости, а интервал (-R;R)-интервала сходимости степенного ряда.

2) и 3) на любом отрезке [a,b], целиком принадлежащем интервалу сходимости(-R;R), ф-я F(x) является непрерывной, а следовательно степенной ряд можно почленно интегрировать и дифференцировать на этом отрезке.

4) Степенные ряды вида а01х+а2х2+…+аnх2+…+аn+1хn+1+… и

а01(х-х0)+а2(х-х0)2+…+аn(х-х0)2+… сходяться равномерно.

5) Степенные ряды сход к фун S(x), которая непрерывна в обл сходимости.

Функциональные ряды

Ряд U1+U2+..+Un+.. называется функциональным, если его члены являются функциями от Х. Рассмотрим функциональный ряд U1(Х)+U2(Х)+..+Un(Х)+...(1) Совокупность тех значений Х, при которых функциональный ряд сходится, называют областью сходимости этого ряда.

Обозначим через Sn(Х) сумму первых n членов ряда (1). Если этот ряд сходится и сумма его равна S(x), то S(x)=Sn(x)+rn(x), где rn(x) есть сумма ряда Un+1(x)+Un+2(x) +…, т.е. rn(x)= Un+1(x)+Un+2(x) +… В этом случае величина rn(x) называется остатком ряда (1). Для всех значений Х в области сходимости ряда имеет место соотношение Limn→∞rn(x)= Limn→∞[S(x)-Sn(x)]=0, т.е. остаток rn(x) сходящегося ряда стремится к нулю при n→∞.

Функциональный ряд U1(Х)+U2(Х)+..+Un(Х)+.. (1) называется мажорируемым в нек-й области изменения Х, если существует такой сходящийся числовой ряд а123+…+аn..(2) с положительными членами, что для всех значений Х из данной области выполняются соотношения │U1(x)│≤a1,…,│Un(x)│≤an ,… Иначе, ряд называется мажорируемым, если каждый его член по абсолютной величине не больше соответствующего члена нек-го сход. ряда с полож. членами.

Ряд Тейлор.

Для ф-и F(x) имеющей все производные до (n-1) порядка включительно, в окрестности точки х=а справедлива формула Тейлора: f(x)=f(a)+f¢(a)(x-a)+f¢¢(a)[(x-a)2/2!]+…

…+fn(a)[(x-a)n/n!]+Rn(x), (1) где остаточный член Rn(х)={[(x-a)n+1]/[(n+1)!]}f(n+1)[a+q(x-a)], где 0<q<1. Для того, чтобы ряд сходился к ф-и, необходимо и достаточно, чтобы при n®¥ остаток ряда стремился к 0, т.е. Rn(x)®o. Переходя в формуле (1) к пределу при n®¥, получим справа бесконечный ряд, котороый наз рядом Тейлора:

f(x)=f(a)+f¢(a)(x-a)+…+fn(a)[(x-a)n/n!]+…

Если в ряде Тейлора предположим а=0, то получим ряд Маклорена: f(x)=f(0)+f¢(0)x+f¢¢(0)[x2/2!]+…

…+fn(0)[xn/n!]+….

Разложение нек-х ф-й в ряд Маклорена:

ex=1+x+x2/2!+…+xn/n!+… (-¥;¥)

sinX=x-x3/3!+x5/5!+…+(-1)n-1[X2n-1]/(2n-1)!+… (-¥;¥)

cosX=1-x2/2!+x4/4!-…+[(-1)nX2n]/(2n)!+… (-¥;¥)

(1+x)m=1+mx+[m(m-1)x2]/2!+[m(m-1)*

*(m-2)x3]/3!+[m(m-1)(m-n+1)xn]/n!+… (-1;1)

ln(1+x)=x-x2/2+x3/3-..+[(-1)nxn+1]/(n+1)+.. (-1;1]

1/(1-x)=1+x+x2+…+xn+..

1/(1+X2)=1-x2+x4-x6+…

arctgX=x-x3/3+x5/5-x7/7+…+[(-1)n+1x2n-1]/2n-1+…