при описании атомных явлений недопустимо: уж слишком они противо-
речивы. Но, вместе с тем, необходимо осмыслить в понятиях физики
те эксперементы, которые неопровержимо свидетельствуют о волновых
и корпускулярных свойствах движущихся атомных объектов. Других
понятий, описывающих атомные эксперементы, кроме понятий класси-
ческой механики, нет. Чтобы применять без противоречий понятия
классической механики, необходимо признать существующим принципи-
ально неконтролируемое взаимодействие, между атомным объектом и
прибором, которое ведет к тому, что в атомной области использова-
ние одного классического понятия ( например, импульса ) исключает
другое ( координату ). С этой точки зрения понятие атома или его
импульса существуют реально только при наблюдении атома прибором
соответствующего класса. Развитие этих идей приводит к утвержде-
нию: если при описании поведения электронов пользоваться прост-
ранственно-временными понятиями, то обязателен отказ от причин-
ности; если же пользоваться понятиями причинности, то столь же
обязательно представлять электроны вне пространства и времени. Т.
о., пространственно-временное описание и принципы причинности
исключают друг друга и в этом смысле являются "дополнительными".
Руководствуясь концепцией дополнительности, Бор и Гейзенберг выс-
казались за пересмотр в квантовой механике вопроса об объективной
реальности, причинности и необходимости.
Вся суть в том, что "копенгагенская интерпретация" пытается
решить неправильно ею же поставленную задачу: проследить за пове-
дением атомного объекта, принципиально не выходя за рамки понятий
классической механики. Когда же выясняется, что эта задача невы-
полнима, отрицательный результат такой попытки рассматривается не
как необходимое следствие существования волновых свойств атомных
объектов, а приписываются наличию некоторого "неконтролируемого
взаимодействия" между объектом и прибором, т. е. наличию дополни-
тельности. Но принципиальной неконтролируемости не существует -
это доказали труды современных ученых-физиков. Теория принципи-
альной неконтролируемости и дополнительности есть лишь фантасти-
ческое отражение нераздельных корпускулярно-волновых свойств мик-
рообъекта.
Проблема причинности.
Бор и Гейзенберг неправильно увидели в философском свете
свои собственные достижения в науке. Это отразилось у них и на
разборе проблемы причинности, которая в современных дискуссиях по
квантовой механике занимает важнейшее место
"Копенгагенская интерпритация" именно потому, что она не
признает объективной реальности, существующей независимо от наб-
людения, приходит к заключению, что причинность - "неплодотворная
и бессмысленная спекуляция", устарелое понятие, на смену которому
пришло, мол, понятие дополнительности, что квантовая механика ин-
детерминистична и т. д.
На самом деле квантовая механика чужда индетерминистическим
концепциям. Всем своим научным содержанием она подтверждает науч-
ный материализм нашей эпохи.
Вместе с тем научный материализм указал квантовой механике
выход из тупика индетерминизма на безграничные просторы познания
закономерностей микроявлений.
Детерминизм, т.е. признание того, что все явления природы,
необходимо закономерно, причинно связаны друг с другом, лежит в
основе науки. Существующая в мире случайность представляет собой
форму проявления необходимости и может быть правильно понята
только в связи с необходимостью и на ее основе. Одну из форм все-
общей взаимозависимости явлений материального мира составляет
причинность. История науки, в том числе физики и механики, как и
вся общественная практика человека, приводит к выводу, что наши
знание закономерных, необходимых, причинных связей явлений приро-
ды становится с развитием науки и практики все более глубоким и
полным, преодолевая относительную ограниченность, свойственную
науке на отдельных ее ступенях.
Квантовая механика дает великолепный материал для подтверж-
дения этих положений. Открытие Гейзенбергом соотношения неопреде-
ленностей и Шредингером волнового уравнения, имеющего в квантовой
механике такое же значение, как законы Ньютона в классической ме-
ханике, открытие своеобразных статистических законов атомных яв-
лений, о которых старая физика и не догадывалась, знаменовали со-
бой прогресс в познании объективных закономерностей природы,
дальнейшее углубление нашего знания объективных причинных связей.
Объективные закономерные, причинные связи явлений не сводятся к
тем причинным связям, которые выразила в своих уравнениях класси-
ческая механика; они бесконечно многообразнее и "удивительнее",
чем это допускал механический материализм.
Для правильного ответа на филосовский вопрос о причинности,
поставленный квантовой механикой, важно учесть следующее положе-
ние Ленина: "Казуальность, обычно нами понимаемая, есть лишь ма-
лая частичка всемирной связи6 но ... частичка не субъективной, а
объективной реальной связи". ( 5,с. 136 )
Философские размышления о пространстве и времени.
Достижения физики XIX-XX вв. значительно повлияли на конк-
ретные представления о смысле таких философских категорий, как
пространство и время.
Современные физические представления о пространстве и време-
ни разработаны теорией относительности; по сравнению с классичес-
кой физикой - это новая ступень в познании физикой объективно-ре-
альных пространств и времени. Теория относительности, созданная
великим физиком нашей эпохи А. Эйнштейном, связала в высшем
единстве классическую механику и электродинамику, и пересмотрела
основные понятия и положения классической механики, относящиеся к
длине и длительности, к массе, энергии, импульсу и т. д., подчи-
нив их новым физическим понятиям и положениям, полнее и глубже
отражающим движущуюся материю.
Для классической физики пространство и время были некими са-
мостоятельными сущностями, причем пространство рассматривалось
как простое вместилище тел, а время - как только длительность
процессов; пространственно-временные понятия выступали как не
связанные друг с другом. Теория относительности показала односто-
ронность такого взгляда на пространство и время. Пространство и
время органически связаны, и эта связь отражается в теории отно-
сительности, в математическом аппарате которой фигурируют так на-
зываемые четырехмерные пространственно-временные векторы и тензо-
ры.Эта теория привела к выводам о зависимости ритма часов от сос-
тояния их движения, зависимости массы от скорости, о взаимозави-
симости между массой и энергией; все эти выводы широко подтверж-
дены опытом.
В чем же состоят основные выводы теории относительности по
данному вопросу? Специальная теория относительности, построения
которой было завершено А. Эйнштейном в 1905 году, доказала, что в
реальном физическом мире пространственные и временные интервалы
меняются при переходе от одной системы отчета к другой. Старая
физика считала, что если системы отсчета движутся равномерно и
прямолинейно относительно друг друга (такое движение называется
инерциальным), то пространственные интервалы ( расстояние между
двумя ближними точками ), и временные интервалы ( длительность
между двумя событиями ) не меняются.
Теория относительности эти представления опровергла, вернее,
показала их ограниченную применимость. Оказалось, что только тог-
да, когда скорости движения малы по отношению к скорости света,
можно приблизительно считать, что размеры тел и ход времени оста-
ются одними и теми же, но когда речь идет о движениях со скорос-
тями, близкими к скорости света, то изменение пространственных и
временных интервалов становится заметным. При увеличении относи-
тельной скорости движения системы отсчета пространственные интер-
валы сокращаются, а временные растягиваются.
До создания теории относительности считалось, что объектив-
ность пространственно-временного описания гарантируется только
тогда, когда при переходе от одной системы отсчета к другой сох-
раняются отдельно пространственные и отдельно временные интерва-
лы. Теория относительности обобщила это положение. В зависимости
от характера движения систем отсчета драг относительно друга про-
исходят различные расщепления единого пространства-времени на от-
дельно пространственный и отдельно временной интервалы, но проис-
ходят таким образом, что изменение одного как бы компенсирует из-
менение другого. Получается, что расщепление на пространство и
время, которое происходит по-разному при различных скоростях дви-
жения, осуществляется так, что пространственно-временной интер-
вал, т.е. совместное пространство-время ( расстояние между двумя
близлежащими точками пространства и времени ), всегда сохраняет-
ся, или, выражаясь научным языком, остается инвариантом. Тем са-
мым специальная теория относительности раскрыла внутреннюю связь
между собой пространства и времени как форм бытия материи. С дру-
гой стороны, поскольку само изменение пространственных и времен-
ных интервалов зависит от характера движения, то выяснилось,
пространство и время определяются состояниями движущейся материи.
Они таковы, какова движущаяся материя.
Идей специальной теории относительности получила дальнейшее
развитие и конкретизацию в общей теории относительности, которая
была создана Эйнштейном в 1916 г. В этой теории было показано,