Смекни!
smekni.com

Комплексные числа (стр. 2 из 5)

2 Способ:

5.ВЫЧИТАНИЕ И ДЕЛЕНИЕ КОМПЛЕКСНЫХ ЧИСЕЛ

Вычитание комплексных чисел – это операция, обратная сложению: для любых комплексных чисел Z1 и Z2 существует, и притом только одно, число Z, такое, что:

Z + Z2=Z1

Если к обеим частям равенства прибавить (–Z2) противоположное числу Z2:

Z+Z2+(–Z2)=Z1+(–Z2), откуда

Z = Z1 – Z2

Число Z=Z1+Z2 называют разностью чисел Z1 и Z2.

Деление вводится как операция, обратная умножению:

Z×Z2=Z1

Разделив обе части на Z2 получим:

Z=

Из этого уравнения видно, что Z2

0

Геометрическое изображение разности комплексных чисел

Рисунок 4

Разности Z2 – Z1 комплексных чисел Z1 и Z2, соответствует разность векторов, соответствующих числам Z1 и Z2. Модуль

разности двух комплексных чисел Z2 и Z1 по определению модуля есть длина вектора Z2 – Z1. Построим этот вектор, как сумму векторов Z2 и (–Z1) (рисунок 4). Таким образом, модуль разности двух комплексных чисел есть расстояние между точками комплексной плоскости, которые соответствуют этим числам.

Это важное геометрическое истолкование модуля разности двух комплексных чисел позволяет с успехом использовать простые геометрические факты.

Пример 2: Даны комплексные числа Z1= 4 + 5·i и Z2= 3 + 4·i. Найти разность Z2 – Z1 и частное

Z2 – Z1 = (3 + 4·i) – (4 + 5·i) = –1 – i

=
=

6.ТРИГОНОМЕТРИЧЕСКАЯ ФОРМА КОМПЛЕКСНОГО ЧИСЛА

Рисунок 5

Запись комплексного числа Z в виде A+B·i называется алгебраической формой комплексного числа. Помимо алгебраической формы используются и другие формы записи комплексных чисел.

Рассмотрим тригонометрическую форму записи комплексного числа. Действительная и мнимая части комплексного числа Z=A+B·i выражаются через его модуль

= r и аргумент j следующим образом:

A= r·cosj ; B= r·sinj.

Число Z можно записать так:

Z= r·cosj+ i·

·sinj = r·(cosj + i·sinj)

Z = r·(cosj + i·sinj) (2)

Эта запись называется тригонометрической формой комплексного числа.

r =

– модуль комплексного числа.

Число j называют аргументом комплексного числа.

Аргументом комплексного числа Z

0 называется величина угла между положительным направлением действительной оси и вектором Z, причем величина угла считается положительной, если отсчет ведется против часовой стрелки, и отрицательной, если производится по часовой стрелке.

Для числа Z=0 аргумент не определяется, и только в этом случае число задается только своим модулем.

Как уже говорилось выше

= r =
, равенство (2) можно записать в виде

A+B·i=

·cosj + i·
·sinj, откуда приравнивая действительные и мнимые части, получим:

cosj =

, sinj =
(3)

Если sinj поделить на cosj получим:

tgj=

(4)

Эту формулу удобней использовать для нахождения аргумента j, чем формулы (3). Однако не все значения j, удовлетворяющие равенству (4), являются аргументами числа A+B·i . Поэтому при нахождении аргумента нужно учесть, в какой четверти расположена точка A+B·i.

7.СВОЙСТВА МОДУЛЯ И АРГУМЕНТА КОМПЛЕКСНОГО ЧИСЛА

С помощью тригонометрической формы удобно находить произведение и частное комплексных чисел.

Пусть Z1= r1·(cosj1 + i·sinj1), Z2 = r2·(cosj2 + i·sinj2). Тогда:

Z1Z2= r1·r2[cosj1·cosj2 – sinj1·sinj2 + i·( sinj1·cosj2 + cosj1·sinj2)]=

= r1·r2[cos(j1 + j2) + i·sin(j1 + j2)].

Таким образом, произведение комплексных чисел, записанных в тригонометрической форме, можно находить по формуле:

Z1Z2= r1·r2[cos(j1 + j2) + i·sin(j1 + j2)] (5)

Из формулы (5) следует, что при умножении комплексных чисел их модули перемножаются, а аргументы складываются.

Если Z1=Z2 то получим:

Z2=[r·(cosj + i·sinj)]2= r2·(cos2j + i·sin2j)

Z3=Z2·Z= r2·(cos2j + i·sin2j)·r·(cosj + i·sinj)=

= r3·(cos3j + i·sin3j)

Вообще для любого комплексного числа Z= r·( cosj + i·sinj)

0 и любого натурального числа n справедлива формула:

Zn =[ r·(cosj + i·sinj)]n= rn·( cosnj+ i·sinnj), (6)

которую называют формулой Муавра.

Частное двух комплексных чисел, записанных в тригонометрической форме, можно находить по формуле:

[ cos
(j1j2) + i·sin(j1j2)]. (7)

=
= cos
(j2) + i·sin(j2)

Используя формулу 5

(cosj1 + i·sinj1)×( cos(j2) + i·sin(j2)) =

cos(j1j2) + i·sin(j1j2).

Пример 3:

Z3 = –8

Число –8 запишем в тригонометрической форме

8 = 8·( cos(p + 2pk) + i·sin(p + 2pk)), kÎZ

Пусть Z = r×(cosj + i×sinj), тогда данное уравнение запишется в виде:

r3×(cos3j + i×sin3j) = 8·( cos(p + 2pk) + i·sin(p + 2pk)), kÎZ

Тогда 3j =p + 2pk, kÎZ

j =

, kÎZ

r3 = 8

r = 2

Следовательно:

Z = 2·( cos(

) + i·sin(
)), kÎZ

k = 0,1,2...

k = 0

Z1 = 2·( cos

+ i·sin
) = 2·(
i) = 1+
×i

k = 1

Z2 = 2·( cos(

+
) + i·sin(
+
)) = 2·( cosp + i·sinp) = –2