Смекни!
smekni.com

Случайные функции (стр. 2 из 3)

и вообще

Это — самые простые соотношения в теории случайных процессов.Онимогут применяться для характеристики некоторых видов помех (чисто слу­чайные хаотические помехи).

Для характеристики полезных входных сигналов систем регулирования и следящих систем соотношения практически не могут при­меняться, так как для этих сигналов ход процесса в последующие моменты времени в какой-то степени зависит от того, что было в предыдущие моменты времени,

Так, например, если речь идет о слежении за самолетом, то он не может как угодно быстро менять свое положение и скорость. Поэтому если он в мо­мент времени t занял положение х1 то этим самым его возможное положение х2 в следующий момент t2 ограничено, т. е. события (x1, t1) и (x2,t2) не будут независимыми. Чем более инерционен изучаемый объект, тем больше эта взаимозависимость, или корреляция. В таких случаях вместо формулынеобходимо записать

где w2,1 1 {x2, t2)dх — условная вероятность того, что случайный процесс пройдет вблизи точки (x2, t2), есди он уже прошел через точку (x1,t2). Сле­довательно, зная плотности вероятности, можно найти также и условную плотность вероятности

'Кроме того, имеет место следующая связь между основными плотно­стями вероятности:

так какw 1, t1) есть плотность вероятности случайной величины(x1,t1) безотносительно к тому, какое потом будет значение (x2, t2), т. е. допус­кается —оо<х2<+оо. Аналогичным образом любая плотность вероят­ности низшего порядка всегда может быть получена из высшей, т. е. выс­шие плотности вероятностей содержат наибольшее количество информации о случайном процессе (о взаимосвязях между возможными значениями слу­чайной величины х в различные моменты времени).

Написанные соотношения справедливы для случайных процессов любых типов. В зависимости же от того, до какого порядка принимаются во внима­ние плотности вероятности, а также от разных дополнительных гипотез о фор­мах связи между w1,w2,...,wп рассматриваются разные типы случайных процессов в отличие от чисто случайных.

Стационарные случайные процессы

Стационарным случайным процессом называется такой процесс, вероят­ностные характеристики которого не зависят от времени. Все плотности ве­роятностей w1, w2, .. ., wn не меняются при любом сдвиге рассматриваемого участ­ка процесса во времени, т. е. при сохра­нении постоянной разности.

Можно сказать, что стационарный случайный процесс в какой-то мере аналогичен обычным стационарным иди уста­новившимся процессам в автоматических системах.. Например, при рассмотрении обычных установившихся периодических колебаний ничего не изменится, если пере­нести начало отсчета на какую-нибудь величину. При этом сохранят свои значения такие характеристики, как частота, амплитуда, среднеквадратич­ное значение и т. п.

В стационарном случайном процессе закон распределения один и тот же для каждого момента времени, т. е- плотность вероятности не зависит от времени: w(х, t) = w(x).

Отсюда получаем x`= соnst b s=const вдоль всего случайного процесса. Следовательно, в стационарном случайном процессе средняя линия, в отли­чие от общего случая будет прямая х` = соnst, подобно постоянному смещению средней линий обычных периодических колебаний. Рассеяние значений переменной х в стационарном случайном процессе определяемое s=const также будет все время одинаковым, подое­но постоянному значению среднеквадратичного отклонения обычных уста­новившихся колебаний от средней линии.

Аналогичным образом и двумерная плотность вероятности также будет одна и та же для одного и того же промежутка

и также для n-мерной плотности вероятности.

Задание всех этих функций распределения плотности определяет слу­чайный процесс. Однако более удобно иметь дело с некоторыми осредненными и характеристиками процесса.

Прежде чем перейти к ним, отметим два важных для практики свойства. 1. Ограничиваясь только стационарными случайными процессами, можно будет определить только установившиеся (стационарные) динамиче­ские ошибки автоматических систем при случайных воздействиях. Такой прием применялся и ранее при рассмотрении регулярных воздействий, когда определялись динамические свойства систем регулирования по величине динамических ошибок в установившемся периодическом режиме.

2. Стационарные случайные процессы обладают замечательным свой­ством, которое известно под названием эргодической гипотезы.

Для стационарного случайного процесса с вероятностью, равной еди­нице (т. е. практически достоверно.

В самом деле, поскольку вероятностные характеристики стационарного случайного процесса течением времени не меняются,то длительное наблюдение случайного процесса на одном объекте (среднее по времени) дает в среднем такую же картину, как и большое число наблю­дений, сделанное в один и тот же момент времени на большом числе одинако­вых объектов (среднее по множеству).

Для многих случаев существует математическое доказательство этого свойства. Тогда оно сводится к эргодической теореме.

Итак, среднее значение (математическое ожидание) для стационарного процесса будет

Аналогичным образом могут быть записаны моменты более высоких порядков — дисперсия, среднеквадратичное отклонение и т. п.

Эргодическая гипотеза позволяет сильно упрощать все расчеты и экс­перименты. Она позволяет для определения х. D,s:, вместо параллель­ного испытания многих однотипных систем в один и тот же момент времени, пользоваться одной кривой х{t), полученной при испытании одной системы в течение длительного времени.

Таким образом, важное свойство стационарного случайного процесса состоит в том, что отдельная его реализация на бесконечном промежутке времени полностью определяет собой весь случайный процесс со всеми бес­численными возможными его реализациями. Этим свойством не обладает никакой другой тип случайного процесса.

Корреляционная функция

Начальный корреляционный, момент двух значений случайной функции х (t) и х (t1), взятых в моменты времент t и t1, носит название корреляционной (автокорреляционной) функции. Она может быть найдена из выражения.

где w2 (x,t,x1, t1) — двумерная плотность вероятности.

Иногда под корреляционной функцией понимают центральный корре­ляционный момент x (t) и x (t1), т.е.

В этом случае корреляционная функция может быть представ­лена в виде суммы

Корреляционная функция является весьма универсальной характери­стикой для случайного процесса. Она определяет зависимость случайной величины в последующий момент времени x(t1) от предшествующего значения х (t) в момент времени t. Это есть мера связи между ними.

Рассмотрим основные свойства корреляционных функций.

1. Из определения корреляционной функции следует свойство симметрии:

2. При t1=t корреляционная функция дает средний квадрат случайной величины, a R0(t,t1)—дисперсию:

3. Можно показать, что прибавление к случайным величинам произ­вольных неслучайных величин не меняет их корреляционных моментов и дис­персии. Поэтому корреляционная функция R0 (t,t1) не изменится, если к случайной функции добавить произвольную неслучайную функцию. Это свойство не относится к функции R (t, t1), так как добавление неслучайных величин к случайным изменяет начальные моменты. В этом случае корреля­ционная функция будет равна сумме корреляционных функций случайной и неслучайной функций.