Смекни!
smekni.com

Случайные функции (стр. 1 из 3)

Случайные процессы в системах автоматического регулирования.

До сих пор поведение систем автоматического регулирования исследовалось при определенных, заданных во времени задающих и возмущающих воздействиях (ступенчатая функция, импульсная функция, гармоническое воздействие и т. д.)

Однако во многих случаях характер воздействия бывает таким, что его нельзя считать определенной функцией времени. Оно может принимать с течением времени самые разнообразные случайные значения. В таких случаях мы можем оценить только вероятность появления той или иной формы воздействия в тот или иной момент времени. Это происходит не потому, что оно неизвестно заранее, а потому, что сама природа реального задающего или возмущающего воздействия такова, что величина его в каждый момент времени и процесс его изменения с течением времени зависят от множества разнообразных величин, которые случайным образом могут комбинироваться друг с другом, появляться одновременно иди с любым сдвигом во времени и т. п.

Вероятностные характеристики дискретных случайных величин. Чтобы полностью знать дискретную случайную величину “надо иметь следующие данные:

а) все возможные значения,

которые она может принимать при данных условиях задачи или опыта;

б) вероятность появления каждого из этих значений.

Графически этот закон распределения изображен на рис. 1. Он представляет собой равновероятное распределение в некотором интервале (в рассматриваемом случае от 1 до 6).

Рис. 1

В некоторых случаях закон распределения случайной величины может задаваться в аналитической форме.

Примером аналитического задания закона распределения дискретно случайной величины является часто используемый закон Пуассона. Он применим к дискретным случайным величинам, которые теоретически могут принимать все положительные значения от 0 до оо. Примерами таких .величин могут служить число пасса- жиров вагона трамвая, число вызовов на телефонной станции в течение какого-либо определенного отрезка времени, число электронов, попадающих на анод электронной лампы за определенный промежуток времени, и т. п. Этот закон записывается следующим образом для целых значений числа х:

где Р(х) — вероятность появления значения х', ^ представляет собой среднее значение данной дискретной величины, полученное по результатам большого числа опытов.

Хотя закон распределения полностью определяет случайную величину для практики нужны некоторые более простые осредненные характеристики случайной величины, выражающиеся в виде обыкновенных неслучайных чисел.

Одной из таких характеристик является среднее значение, или математическое ожидание, случайной величины. Оно определяется из выражения

Часто используется так называемое среднеквадратичное значение случайной величины, представляющее собой корень квадратный из среднего квадрата случайной величины:

Иногда рассматривается центрированное значение случайной величины д"о = х— х, где х — среднее значение. Тогда аналогично формуле можно ввести понятие центрального момента м-го порядка

Из формулы следует, что центральный момент первого порядкавсегда равен нулю.

Обратимся теперь к характеристикам рассеяния дискретной случайнойвеличины.

Если х — случайная величина, x` — среднее значение этой величины, то величина х —х` есть отклонение случайной величины от ее среднего значения. Это отклонение является случайной величиной, как и сама величина х.

Средним отклонением D называется среднее значение (математическое ожидание) абсолютной величины отклонения, т. е.

Дисперсией называется средний квадрат отклонения случайной величины от ее среднего значения. Она совпадает с центральным моментом второго порядка

Вероятностные характеристики непрерывных случайных величин. Непрерывная случайная величина может принимать все значения в каком-либо заданном ограниченном интервале (а < х < b) или все значения от —оо до +оо. Следовательно, функция распределения (интегральный закон распре- деления) для непрерывной случайной величины будет изображаться непрерывной кривой. На рис. 2 показаны оба упомянутых выше варианта.

Вероятность того, что непрерывная случайная величина примет определенное числовое значение х, бесконечно мала (например, вероятность попадания центра тяжести снаряда в определенную точку цели). Вероятность же того, что непрерывная случайная величина окажется в некотором промежутке х1<. х<.х1будет иметь конечное значение, а именно:

Вероятность того, что непрерывная случайная величина содержится в промежутке между х и х + dх, будет

Величина

называется плотностью вероятности.

Закон распределения для непрерывной случайной величины в отличие от дискретной задается не в виде значений вероятности, а в виде плотности вероятности w(х), называемой также дифференциальным законом распределения. На рис. 3 показаны дифференциальные законы распределения для

двух вариантов функции распределения F (x), показанных на рис. 2.

Если бы здесь использовалось то же понятие закона распределения, что и длядискретной случайной величины, то получились бы бесконечно малые ординаты Р(х).

Рассеяние непрерывной случайной величины можно оценивать однимиз следующих значений, словесные формулировки которых остаются прежними.

Среднее отклонение (мало удобная для вычислений величина)

Дисперсия (наиболее удобная для вычислений величина)

Среднеквадратичное отклонение

Случайные процессы

Случайная величина х, изменяющаяся во времени ^ называется случай­ным или стохастическим процессом. Случайный процесс не есть определен­ная кривая х (t), а является множеством возможных кривых х {1), так же как случайная величина не имеет определенного значения, а является сово­купностью (множеством) возможных значений.

Можно еще сказать, что случайный процесс есть такая функция времени, значение которой в каждый момент времени является случайной величиной.

Примерами случайных процессов могут, например, являться: координа­ты самолета, замеряемые радиолокационной станцией; угол визирования движущейся цели головкой самонаведения; помехи в системе телеуправле­ния; нагрузка электрической сети и т. п.

Итак, в случайном процессе нет определенной зависимости х{t). Каждая кривая множества (рис.4) является лишь отдельной реализацией слу­чайного процесса. Никогда нельзя сказать заранее, по какой кривой пойдет процесс.

Однако случайный процесс может быть оценен некоторыми вероятност­ными характеристиками.

В каждый отдельный момент времени наблю­даются случайные величины каждая из которых имеет

свой закон распределения. Поскольку это — непрерывная случайная вели­чина, то надо пользоваться понятием плотности вероятности.

Обозначим w(x,t) закон распределения для всех этих отдельных случайных величин. В общем случае он меняется с течением времени,:

причем по свойству для каждого из них

Для каждого заданного момента времени можно найти характеристики случайных величин, определенные. В результате будем иметь сред­нее по множеству (математическое ожидание)

и дисперсию

Среднее значение случайного процесса представляет собой некоторую среднюю кривую (рис. 11.12), около которой группируются все возможные отдельные реализации этого процесса, а дисперсия D(t) или среднеквадратич­ное отклонение s(t) характеризуют рассеяние отдельных возможных реали­заций процесса около этой средней кривой.

Простейшим типом случайного процесса является чисто случайный процесс. В таком процессе все значения случайной величины в отдельные момен­ты времени не зависят друг от друга. Тогда появления значений(x1,t1) и т. д. будут независимыми случайными. событиями, для которых вероятность их совместного наступления равна, как известно, произведению вероятностей наступления каждого из них в отдельности. Следовательно, для чисто случайного процесса