Смекни!
smekni.com

Комплексные числа в планиметрии (стр. 3 из 10)

, и поэтому условие (8) принимает вид:

; (9)

3. Коллинеарность точек A, В, С характеризуется коллинеарностью век­торов

и
. Используя (8), получаем:

. (10)

Это критерий принадлежности точек A, B, С одной прямой. Его можно представить в симметричном виде

(11)

Если точки A и B принадлежат единичной окружности

=l, то
, и поэтому каждое из соотношений (10) и (11) преобразуется (после сокращения на (а-b) в такое:

(12)

Точки А и В фиксируем, а точку С будем считать переменной, переобозна­чив ее координату через z. Тогда каждое из полученных соотношений (10), (11), (12) будет уравнением прямой АВ:

, (10а)

. (12a)

В частности, прямая ОА имеет уравнение

Переходим к выводу критериев перпендикулярности отрезков. Ясно, что

Комплексные числа с аргументами

и
- являются чисто мнимыми.

Поэтому,

или

(13)

Отрезки АВ и CD перпендикулярны тогда и только тогда, когда векторы точек с комплексными координатами а—b и с—d перпендикулярны. В си­лу (13) имеем:

(14)

В частности, когда точки А, В, С, D принадлежат единичной окружности

=l, то зависимость (14) упрощается:

(15)

Выведем уравнение касательной к единичной окружности

=l в ее точке

P(р). Если М (z) — произвольная точка этой касательной, то

и обратно. На основании (14) имеем:

или

.

Поскольку

, то уравнение касательной становится таким:

. (16)

Это частный случай уравнения (12a) при а=b=р. Решим еще две вспомогательные задачи, необходимые для решения содержательных геометрических задач.

Задача 1. Найти координату точки пересечения секущих АВ и CDединичной окружности

=l, если точки А, В, С, D лежат на этой окруж­ности и имеют соответственно комплексные координаты а, b, с, d.

Пользуясь уравнением (12а), получаем систему

из которой почленным вычитанием находим:

(17)

В том частном случае, когда хорды АВ и CD перпендикулярны, в силу (15) ab=-cd, и поэтому результат (17) приводится к виду

откуда

(18)

В этом случае точка пересечения определяется только тремя точками A, В, С, так как

, и, значит,

(19)

3адача 2. Найти комплексную координату точки пересечения касатель­ных в точках A(а) и B(b) единичной окружности

=l. Для искомой координаты z имеем систему

из которой находим:

Поскольку

то получаем окончательно:

или
(20)

Покажем теперь метод комплексных чисел в действии, применяя его к доказательству классических теорем элементарной геометрии.

Теорема Ньютона. Вописанном около окружности четырехуголь­нике середины диагоналей коллинеарны, с центром окружности.

Доказательство. Примем центр окружности за начало, полагая ее радиус равным единице. Обозначим точки касания сторон данного четы­рехугольника AoBoCoDo через А, В, С, D (в круговом порядке) (рис.4). Пусть М и N — середины диагоналей АoСo и BoDo соответственно. Тогда согласно (20) точки Аo, Вo, Сo, Do будут иметь соответственно комплексные координаты:

где a, b, c, d – комплексные координаты точек A, B, C, D.

Поэтому

Вычисляем

Поскольку
то непосредственно видно, что
На основании (6) точки О, М, N коллинеарны.

Теорема Гаусса.Если прямая пересекает прямые, содержащие стороны ВС, СА, АВ треугольника АВС соответственно в точках А1, B1, C1, то середины отрезков АА1, ВВ1, СС1 коллинеарны (рис.5).

Доказательство. Используя (11), запишем условия коллинеар­ности троек точек АВ1С, СА1В, ВС1А, A1B1C1:

(21)

Если М, N, P середины отрезков AA1, BB1, CC1, то предстоит показать, что

(22)

Так как

то доказываемое равенство (22) эквивалентно такому:

или после перемножения:

(23)

Теперь легко видеть то, что (23) получается почленным сложением ра­венств (21). Доказательство закончено.

Теорема Паскаля.Точки пересечения прямых, содержащих про­тивоположные стороны вписанного шестиугольника, лежат на одной прямой.

Доказательство. Пусть в окружность вписан шестиугольник ABCDEF и

(рис.6). Примем центр окружности за нулевую точку плоскости, а ее радиус - за единицу длины. Тогда согласно (17) имеем:

Вычисляем

ианалогично

Далее находим:

Поскольку числа

равны соответственно
, то устная проверка обнаруживает, что найденное выражение совпадает со своим сопряженным, т. е. является действительным числом. Это означает коллинеарность точек М, N, Р.