или
где
Соотношение (38) есть необходимый и достаточный признак того, что треугольники АВС и
или же так:
Если
Тогда соотношения (35) и (38) становятся признаками равенства треугольников соответственно одинаковой и противоположной ориентации.
Рассмотренные признаки подобия треугольников позволяют обосновать простой способ построение произведения и частного двух комплексных чисел. Пусть даны точки
Обратно: если даны точки М и А соответственно с координатами ab и a, то точка В, соответствующая частному этих чисел строится на основании тех, же подобных треугольников.
Следует обратить внимание на один важный частный случай. Если |а|=1, то точка М будет образом точки В при повороте около нулевой точки на угол
или
Введем в употребление комплексное число
или после умножения первого трехчлена на
Итак, для того чтобы треугольник АВС был правильным, необходимо и достаточно выполнения хотя бы одного из равенств:
или же
Оказывается, первое из этих равенств соответствует только тому случаю, когда треугольник АВС ориентирован положительно, а второе выполняется лишь при отрицательной его ориентации. В самом деле, так как умножению на
Аналогично проверяется выполнение равенства (45) для отрицательно ориентированного правильного треугольника АВС. Очевидно, одновременно равенства (44) и (45) выполняться не могут.
Если правильный треугольник АВС вписан в окружность
Задача 1. Доказать, что треугольник
Решение. Принимаем описанную окружность за единичную
Проверяем выполнимость признака (35):
причем
3адача 2. Два равных одинаково ориентированных треугольника АВС и вписаны в одну окружность. Доказать, что треугольник с вершинами в точках пересечения прямых ВС и
Решение. Придадим окружности уравнение
Осталось проверить условие (17):
3адача 3. Доказать, что середины отрезков, соединяющих соответственные вершины двух равных и противоположно ориентированных треугольников, коллинеарны.
Решение. Для доказательства данной задачи воспользуемся:
1) Формулой (38),- необходимое и достаточное условие равенства двух противоположно ориентированных треугольников ABC и