Смекни!
smekni.com

Разностные аппроксимации (стр. 1 из 5)

1.Примеры разностных аппроксимаций.

Различные способы приближенной замены одномерных дифференциальных уравнений разностными изучались ранее. Напомним примеры разностных аппроксимаций и введем необходимые обозначения. Будем рассматривать равномерную сетку с шагом h, т.е. множество точек

wh={xi=ih, i=0, ±1, ±2,…}.

Пусть u(x) – достаточно гладкая функция, заданная на отрезке [xi-1, xi+1]. Обозначим

Разностные отношения

называются соответственно правой, левой и центральной разностными производными функции u(x) в точке xi , т.е. при фиксированном xiи при h®0 (тем самым при i®¥) пределом этих отношений является u’(xi). Проводя разложение по формуле Тейлора, получим

ux,i – u’(xi) = 0,5hu’’(xi) + O(h2),

ux,i – u’(xi) = -0,5hu’’(xi) + O(h2),

ux,i – u’(xi) = O(h2),

Отсюда видно, что левая и правая разностные производные аппроксимируют u’(x) с первым порядком по h, а центральная разностная производная – со вторым порядком. Нетрудно показать, что вторая разностная производная


аппроксимирует u’’(xi) со вторым порядком по h, причем справедливо разложение


Рассмотрим дифференциальное выражение


(1)

с переменным коэффициентом k(x). Заменим выражение (1) разностным отношением


(2)

где a=a(x) – функция, определенная на сетке wh. Найдем условия, которым должна удовлетворять функция a(x) для того, чтобы отношение (aux)x,i аппроксимировало (ku’)’ в точке xi со вторым порядком по h. Подставляя в (2) разложения



где ui’ = u’(xi), получим

С другой стороны, Lu = (ku’)’ = ku’’ + k’u’,


т.е.

Отсюда видно, что Lhu–Lu = O(h2), если выполнены условия


(3)

Условия (3) называются достаточными условиями второго порядка аппроксимации. При их выводе предполагалось, что функция u(x) имеет непрерывную четвертую производную и k(x) – дифференцируемая функция. Нетрудно показать, что условиям (3) удовлетворяют, например, следующие функции:


Заметим, что если положить ai = k(xi), то получим только первый порядок аппроксимации.

В качестве следующего примера рассмотрим разностную аппроксимацию оператора Лапласа


(4)

Введем на плоскости (x1, x2) прямоугольную сетку с шагом h1 по направлению x1 и с шагом h2 по направлению x2, т.е. множество точек

wh = {(xi1, xj2) | xi1 = ih1, xj2 = jh2; i, j = 0, ±1, ±2,…},

и обозначим


Из предыдущих рассуждений следует, что разностное выражение


(5)

аппроксимирует дифференциальное выражение (4) со вторым порядком, т.е. Lhuij – Lu(xi1, xj2) = O(h21) + O(h22). Более того, для функций u(x1, x2), обладающих непрерывными шестыми производными, справедливо разложение


Разностное выражение (5) называется пятиточечным разностным оператором Лапласа, так как оно содержит значения функции u(x1, x2) в пяти точках сетки, а именно в точках (x1i, x2j), (x1i±1, x2j), (x1i, x2 j±1). Указанное множество точек называется шаблоном разностного оператора. Возможны разностные аппроксимации оператора Лапласа и на шаблонах, содержащих большее число точек.

2. Исследование аппроксимации и сходимости

2.1. Аппроксимация дифференциального уравнения. Ранее рассматривалась краевая задача

(k(x) u’(x))’ – q(x) u(x) + f(x) = 0, 0 < x < l, (1)

– k(0) u’(0) + bu(0) = m1, u(l) = m2, (2)

k(x) ³ c1 > 0, b³ 0,

для которой интегро-интерполяционным методом была построена разностная схема


(3)

(4)

где


(5)


(6)


Обозначим через Lu(x) левую часть уравнения (1) и через Lhyi – левую часть уравнения (3), т.е.


Пусть u(x) – достаточно гладкая функция и u(xi) – ее значение в точке xi сетки

wh = {xi = ih, i = 0, 1, …,N, hN = l} (7)

Говорят, что разностный оператор Lhаппроксимирует дифференциальный оператор L в точке x=xi, если разность Lhui – Lhu(xi) стремится к нулю при h®0. В этом случае говорят также, что разностное уравнение (3) аппроксимирует дифференциальное уравнение (1).

Чтобы установить наличие аппроксимации, достаточно разложить по формуле Тейлора в точке x=xi значения ui±1 = u(xi ± h), входящие в разностное выражение Lhui. Большая часть этой работы проделана в предыдущей главе, где показано, что при условиях

(8)

выполняется соотношение


Если кроме того, докажем, что

di = q(xi) + O(h2), ji = f(xi) + O(h2) (9)

то тем самым будет установлено, что оператор Lh аппроксимирует L со вторым порядком по h, т.е.

Lhui – Lu(xi) = O(h2), i = 1, 2,…, N–1 (10)

Итак, доказательство второго порядка аппроксимации сводится к проверке сводится к проверке условий (8), (9) для коэффициентов (5), (6). Проверим сначала выполнение условий (8). Обозначая p(x) = k-1(x), получим


следовательно,


Аналогично


Отсюда получим


т.е. условия (8) выполнены. Условия (9) выполнены в силу того, что замена интегралов (6) значениями qi, fi соответствует приближенному вычислению этих интегралов по формуле прямоугольников с узлом в середине отрезка интегрирования.

2.2. Аппроксимация граничного условия. Исследуем погрешность аппроксимации разностного граничного условия (4). Обозначим lhu(0) = –a1ux, 0 + bu0. Если u(x) – произвольная достаточно гладкая функция, то очевидно

lhu(0) = –k(0) u’(0) + bu(0) + O(h),

т.е. имеет место аппроксимация первого порядка по h. Однако если u=u(x) – решение задачи (1), (2), то разностное граничное условие (4) имеет второй порядок аппроксимации, т.е.


Докажем последнее утверждение. Используя разложение