Удивительно, но это табу на развитие физических представлений в классической электродинамике существует со времен Герца, и его продолжают настоятельно культивировать уже более века. Другое подобное табу - это завидное упорство в применении инородной электродинамике гауссовой системы единиц, где по существу игнорируется физическое содержание электродинамических соотношений и выдвигается на передний план формализм математики, что создает путаницу физических понятий и мешает действительно разобраться в них. Конкретный пример такого «математического шабаша» в электромагнетизме можно встретить даже в учебниках, когда без разбора пишут, кстати, не считаясь с мнением Максвелла ([1] п. 12, 14), как «
», так и « » либо « » и « ». Кроме того, вызывает недоумение неприятие до сей поры и необъяснимый корпоративный снобизм многих профессиональных физиков в отношении к широко используемой в технических дисциплинах международной системы единиц СИ. По нашему мнению, налицо концептуальный застой и даже стагнация в теории электромагнетизма. При этом, несмотря на все вышесказанное, опять же в учебной литературе повсеместно с помпой утверждается, что именно данная область физического знания наиболее полно разработана во всех ее аспектах и ее современный уровень является вершиной человеческого гения.Однако к настоящему времени исследованиями в области электродинамики, квантовой механики и сверхпроводимости достоверно установлено, что в фундаментальных уравнениях должны фигурировать не электромагнитные поля, а именно их потенциалы. В частности, эффекты Ааронова-Бома, Джозефсона, Мейснера реализуются в поле магнитной компоненты векторного потенциала [6], проявляющего себя тем самым вполне наблюдаемой физической величиной. Известно предложение о применении указанного поля векторного потенциала в технологиях обработки разного рода материалов [7]. Отметим также сообщение [4], где на основе формального использования представлений об электромагнитном векторном потенциале металлического проводника с током установлено, что в проводник при электропроводности вместе с потоком электромагнитной энергии (вектора Пойнтинга) поступают потоки чисто электрической и чисто магнитной энергии, момента электромагнитного импульса. Таким образом, имеем серьезную, требующую своего разрешения проблему, в которой надо должным образом проанализировать известные либо вскрыть новые реалии в физическом содержании уравнений Максвелла, в частности, понять роль и место векторного потенциала в теории электричества
Поставленная задача и проведенный в этом направлении анализ [8-10] показал, что исходные соотношения первичной взаимосвязи электромагнитного поля с компонентами электрической
и магнитной напряженностей и поля электромагнитного векторного потенциала с электрической и магнитной компонентами можно получить непосредственно из системы максвелловских уравнений (1):(a)
, (b) ,(c)
, (d) . (4)Здесь соотношение (4a) для магнитной компоненты векторного потенциала
вводится с помощью уравнения (1d), так как дивергенция ротора произвольного векторного поля тождественно равна нулю. Аналогично соотношение (4b) для электрической компоненты векторного потенциала следует из уравнения (1b) при , справедливого для сред с локальной электронейтральностью. Однозначность функций векторного потенциала, то есть чисто вихревой характер таких полей, обеспечивается условием кулоновской калибровки: div . Далее подстановка соотношения (4a) для в уравнение вихря электрической напряженности (1a) приводит к известной формуле (4с) связи полей векторов и [2], описывающей закон электромагнитной индукции Фарадея. В силу рассмотрения только вихревых полей, формально следующий из таких рассуждений электрический скалярный потенциал тут не обсуждается. Аналогичная подстановка соотношения (4b) для в уравнение вихря магнитной напряженности (1c) с учетом соотношений (2) дает формулу (4d) связи полей векторов и , где – постоянная времени релаксации электрического заряда в среде за счет ее электропроводности.Как видим, полученные соотношения (4) являются базой для интерпретации физического смысла поля электромагнитного векторного потенциала, выяснения его роли и места в теории электричества (см. работу [8]), соответственно, в явлениях электромагнетизма. Однако самое главное и конструктивное в них то, что они представляют собой логически связанную систему уравнений, описывающих структуру и свойства необычного вихревого векторного поля, состоящего их четырех полевых векторных компонент
, , и , которое условно назовем единое электродинамическое поле.Объективность существования указанного единого поля убедительно иллюстрируется основным фундаментальным следствием из соотношений (4), которое состоит в том, что подстановки (4c) в (4b) и (4d) в (4a) приводят к системе новых электродинамических уравнений для поля электромагнитного векторного потенциала с полевыми компонентами: электрической
и магнитной . Видно, что математическая структура этих уравнений, полностью аналогична системе традиционных уравнений электродинамики Максвелла (1):(a) rot
, (b) div ,(c) rot
, (d) div . (5)Чисто вихревой характер компонент
и поля векторного потенциала обеспечивается условием калибровки посредством дивергентных уравнений (5b) и (5d), которые также представляют собой для уравнений (5a) и (5c) начальные условия в математической задаче Коши, что делает систему (5) замкнутой. Неординарность уравнений системы (5) вполне очевидна, поскольку в каждом одном роторном уравнении для компоненты потенциала или содержится информация о свойствах обоих роторных уравнений электромагнитных полей и системы (1). Убедиться в этом посредством дифференцирования по времени и пространству этих уравнений с учетом соотношений (4) предоставим читателю. При этом дивергентные уравнения системы (5) с помощью дифференцирования их по времени преобразуются в соответствующие уравнения системы (1) при .Однако вернемся к соотношениям (4) единого электродинамического поля. Подстановки соотношения (4с) в продифференцированное по времени соотношение (4a) и аналогично (4d) в (4b) дают систему электродинамических уравнений электромагнитного поля (1) при
, где уравнения (1d) и (1b) получаются взятием дивергенции от (4a) и (4b). Уравнения (1а) и (1с) можно также получить, если взять ротор от (4с) и (4d) при подстановке в них (4а) и (4b).