Здесь, согласно (2c),
, - оператор Лапласа, а - фазовая скорость поля волны в отсутствие поглощения. Следовательно, указанные волновые уравнения описывают волны конкретной составляющей единого электродинамического поля в виде одной из парных комбинаций этих четырех волновых уравнений. В итоге возникает физически очевидный вопрос, что это за волны, и каковы характеристики распространения таких волн?Ввиду того, что уравнения систем (1) и (2) математически структурно тождественны, а волновые решения уравнений (1) широко известны [6], то далее анализ характеристик распространения составляющих единого электродинамического поля, например, в виде плоских волн в однородных изотропных материальных средах проведем, прежде всего, для уравнений (3) электрического поля и уравнений (4) магнитного поля. Их необычные структуры между собой также математически тождественны, а волновые решения систем этих уравнений, как будет показано ниже, физически нетривиальны.
Итак, рассмотрим волновой пакет плоской линейно поляризованной электрической волны, распространяющейся вдоль оси 0X с компонентами
и для системы (3) либо магнитной волны с компонентами и для системы (4), которые представим комплексными спектральными интегралами. Здесь, согласно соотношениям (5с) и (5d), учтена функциональная взаимосвязь обсуждаемых волн в виде единого процесса и взаимная коллинеарность векторов и (эти векторы антипараллельны), и компонент полей. Тогда, например, для уравнений электрического поля указанные интегралы имеют вид: и ,где
и - комплексные амплитуды.Подставляя их в уравнения (3a) и (3c), приходим к соотношениям
и . Соответствующая подстановка интегралов и в уравнения (4а) и (4c) дает и . В итоге для обеих систем получаем общее для них выражение:В конкретном случае среды идеального диэлектрика (
) с учетом формулы из следует для обеих систем обычное дисперсионное соотношение [6], описывающее однородные плоские волны электрического или магнитного полей. При этом связь комплексных амплитуд компонент указанных волновых полей имеет специфический вид: в системе (3) и в системе (4),то есть при распространении в диэлектрической среде компоненты поля сдвинуты между собой по фазе на π/2. Специфика здесь в том, что характер поведения компонент поля такой волны в любой точке пространства аналогичен кинематическим параметрам движения (смещение и скорость) классической частицы в точке устойчивого равновесия поля потенциальных сил. Конечно, математически данный результат очевидно тривиален, поскольку компоненты ЭМ поля и поля ЭМ векторного потенциала связаны между собой посредством производной по времени (см. соотношения (5c) и (5d)). Однако с физической точки зрения этот результат весьма нетривиален и безусловно интересен.
Для проводящей среды (
) в асимптотике металлов ( ) дисперсионное соотношение систем уравнений (3) и (4) имеет обычный в таком случае вид , где [6]. Тогда, например, для уравнений (3) связь комплексных амплитуд компонент и волновые решения запишутся в виде экспоненциально затухающих в пространстве плоских волн со сдвигом начальной фазы между компонентами поля на π/4: , (10) .Для уравнений системы (4) их волновые решения математически тождественны (10) с заменой
на и на при следующем выражении связи комплексных амплитуд: .Рассмотрим соответствующие рассуждения для аналогичного представленному выше пакету плоской волны теперь для ЭМ поля с компонентами
и в системе (1), которые в итоге дают соотношения и . Подобным образом для волны поля ЭМ векторного потенциала с компонентами и в системе (2) имеем соответственно и . Таким образом, для этих двух систем электродинамических уравнений снова получаем стандартное выражение:В этом случае для диэлектрической среды (
)дисперсионное соотношение для волновых решений уравнений систем (1) и (2) будет , что описывает обычный режим волнового распространения компонент ЭМ поля [6] и компонент поля ЭМ векторного потенциала в виде однородных плоских волн. При этом связь комплексных амплитуд волновых решений уравнений систем (1) и (2) имеет следующий вид: и ,где сами волновые решения описывают указанные волны, компоненты поля которых синфазно распространяются в пространстве. При этом, согласно соотношениям (5c) и (5d), волны ЭМ поля отстают по фазе на π/2 от волн ЭМ векторного потенциала.
Для проводящей среды (
) в асимптотике металлов ( ) рассуждения полностью аналогичны вышеприведенным. Здесь связи комплексных амплитуд для волновых решений уравнений систем (1) и (2) запишутся в виде: и .Как видим, распространение волн всех четырех составляющих единого электродинамического поля в асимптотике металлов подчиняется теоретически хорошо изученному закону для плоских волн ЭМ поля в металлах [6].
Подводя окончательный итог проведенным исследованиям, следует отметить, что именно уравнения системы (2) поля ЭМ векторного потенциала описывают волны, переносящие в пространстве поток момента ЭМ импульса, которые еще со времен Пойнтинга безуспешно пытаются описать с помощью уравнений ЭМ поля (1) (см., например, результаты анализа в статье [7]). При этом сами по себе волны ЭМ векторного потенциала принципиально не способны переносить энергию, поскольку в уравнениях (2) поля
и отсутствуют. В этой связи укажем на пионерские работы [8], где обсуждаются неэнергетическое (информационное) взаимодействие поля векторного потенциала со средой при передаче в ней таких волн и способ их детектирования посредством эффекта, аналогичного эффекту Ааронова-Бома. Однако, как установлено в настоящей работе, распространение волн ЭМ векторного потенциала в принципе невозможно без присутствия их сопровождающих волн ЭМ поля (см. соотношения (5)) и соответственно наоборот.