Смекни!
smekni.com

Единое электродинамическое поле и его распространение в виде плоских волн (стр. 1 из 3)

Сидоренков В.В., МГТУ им. Н.Э. Баумана

Рассматриваются структура и характеристики распространения векторного четырехкомпонентного единого электродинамического поля, реализующего своим существованием функционально связанные между собой составляющие его поля: электромагнитное поле с векторными компонентами электрической и магнитной напряженности, поле электромагнитного векторного потенциала, состоящего из электрической и магнитной компонент, электрическое поле с компонентами электрической напряженности и электрического векторного потенциала, магнитное поле с компонентами магнитной напряженности и магнитного векторного потенциала.

В настоящее время установлено [1, 2], что в отношении полноты охвата явлений электромагнетизма, наряду с системой уравнений электродинамики Максвелла электромагнитного (ЭМ) поля с компонентами электрической

и магнитной
напряженности:

(a)

, (b)
, (1)

(c)

, (d)
,

существуют и другие системы полевых уравнений, концептуально необходимые для анализа и адекватного физико-математического моделирования электродинамических процессов в материальных средах. Здесь

и
- электрическая и магнитная постоянные,
,
и
- удельная электропроводность и относительные диэлектрическая и магнитная проницаемости среды, соответственно,
- объемная плотность стороннего электрического заряда;
- постоянная времени релаксации заряда в среде за счет электропроводности.

Уравнения в этих других системах рассматривают области пространства, где присутствуют либо только поле ЭМ векторного потенциала с электрической

и магнитной
компонентами:

(a)

, (b)
, (2)

(c)

, (d)
;

либо электрическое поле с компонентами

и
:

(a)

, (b)
, (3) (c)
, (d)
;

либо, наконец, магнитное поле с компонентами

и
:

(a)

, (b)
, (4)

(c)

, (d)
.

Основная и отличительная особенность уравнений систем (2) – (4) в сравнении с традиционными уравнениями Максвелла ЭМ поля (1) с физической точки зрения состоит в том, что именно они, используя представления о поле ЭМ векторного потенциала, способны последовательно описать многообразие электродинамических явлений нетепловой природы в материальных средах, определяемых электрической или магнитной поляризацией и передачей среде момента ЭМ импульса, в частности, реализуемых в процессе электрической проводимости [3] .

Принципиально и существенно то, что все эти системы электродинамических уравнений, в том числе, и система (1) для локально электронейтральных сред (

), являются непосредственным следствием фундаментальных исходных соотношений функциональной первичной взаимосвязи ЭМ поля и поля ЭМ векторного потенциала [1, 2]:

(a)

, (b)
, (5)

(c)

, (d)
.

Очевидно, что данная система соотношений может служить основой для интерпретации физического смысла поля ЭМ векторного потенциала [4], выяснения его роли и места в явлениях электромагнетизма. Однако самое главное и интересное в них то, что они представляют собой систему дифференциальных уравнений, описывающих свойства необычного вихревого векторного поля, состоящего их четырех полевых векторных компонент

,
,
и
, которое назовем единое электродинамическое поле.

Объективность существования указанного единого поля однозначно иллюстрируется указанными системами уравнений (1) – (4) и получаемыми из них соотношениями баланса:

для потока ЭМ энергии из уравнений системы (1)

, (6)

для потока момента ЭМ импульса из уравнений системы (2)

(7)

для потока электрической энергии из уравнений системы (3)

, (8)

и для потока магнитной энергии из уравнений системы (4)

. (9)

Как видим, соотношения (5) действительно фундаментальны и их следует считать уравнениями единого электродинамического поля, базирующегося на исходной своей составляющей - поле ЭМ векторного потенциала, состоящего из двух взаимно ортогональных электрической

и магнитной
векторных полевых компонент. При этом поле ЭМ векторного потенциала своим существованием реализует функционально связанные с ним другие составляющие единого поля: ЭМ поле с векторными компонентами
и
, электрическое поле с компонентами
и
, магнитное поле с компонентами
и
.

Отмеченная здесь структура и взаимосвязь составляющих единого электродинамического поля сохраняется и в статической асимптотике. Логика построения систем полевых уравнений для стационарных составляющих единого поля и анализ физического содержания таких уравнений изложены, например, в работе [5].

Таким образом, имеем очевидное обобщение и серьезное развитие представлений классической электродинамики. В частности, показано, что, так же как и в случае ЭМ поля, в Природе нет электрического, магнитного или другой составляющей единого электродинамического поля с одной полевой компонентой. Структура обсуждаемых составляющих единого электродинамического поля из двух векторных взаимно ортогональных полевых компонент – это объективно необходимый способ их реального существования, принципиальная и единственная возможность распространения конкретной составляющей в виде потока соответствующей физической величины, в случае динамических полей - посредством поперечных волн.

Форма представленных систем уравнений (1) – (4) говорит о существовании волновых уравнений как для компонент ЭМ поля

и
, так и для компонент поля ЭМ векторного потенциала
и
. В этом можно убедиться, взяв, как обычно, ротор от одного из роторных уравнений любой системы, и после чего подставить в него другое роторное уравнение той же системы. Например, в качестве иллюстрации получим для системы (2) волновое уравнение относительно
: