Смекни!
smekni.com

История развития понятия "функция" (стр. 3 из 3)

Дирак Поль Адриен Морис (1902 – 1984 гг.)

Английский физик-теоретик, один из основателей квантовой механики. Основные труды в математике по функциональному анализу и математической физике (уравнение Дирака, дельта-функция Дирака, статистика Ферми-Дирака). Нобелевская премия (1933).

Дирихле Петер Густав Лежен (1805 – 1859 гг.)

Немецкий математик. Основные труды по теории чисел и математическому анализу. Впервые точно сформулировал и исследовал понятие условной сходимости ряда (так называемый признак Дирихле), дал (1829) строгое доказательство возможности разложения в ряд Фурье функций, имеющей конечное число максимумов и минимумов.

Лейбниц Готфрид Вильгельм (1646 – 1716 гг.)

Немецкий математик, физик, философ, изобретатель, историк, языковед. В математике его важнейшей заслугой является разработка (наряду с Ньютоном) дифференциального и интегрального исчисления. Дал определения дифференциала и интеграла, разработал правила дифференцирования суммы, разности, произведения, частного любой постоянной степени, дал определения экстремальных точек и точек перегиба, установил взаимно обратный характер основных операций анализа — дифференцирования и интегрирования. Заложил основы теории рядов и теории дифференциальных уравнений. Им предложены математические символы и термины, вошедшие во всеобщее применение - функция, дифференциал, дифференциальные уравнения, алгоритм, координаты, алгебраические и трансцендентные кривые, модель и др. Изобрел счетную машину и первый интегрирующий механизм, предвосхитил некоторые идеи матлогики, изложил начала теории определителей.

Лобачевский Николай Иванович (1792 – 1856 гг.)

Русский математик. Создатель (1826) неевклидовой геометрии. Дал (1834) метод приближенного решения алгебраических уравнений высших степеней; внес значительный вклад в теорию определителей. В области анализа Лейбниц получил новые результаты в теории тригонометрических рядов. Им же установлен один из наиболее удобных методов приближенного решения уравнений (метод Лобачевского).

Ньютон Исаак (1643 - 727 гг.)

Английский физик, математик, механик и астроном. Одновременно с Лейбницем, но независимо от него, разработал дифференциальное и интегральное исчисления. Создавая математику непрерывных процессов, Ньютон положил в основу понятия флюксии (производной) и флюенты (интеграла). В работе "Анализ при помощи уравнений с бесконечным числом членов" (1669, опубл. 1711) дан метод вычислений и вычислений функций — приближение бесконечными рядами, который имел впоследствии огромное значение для всего анализа и его приложений. В этом же труде изложен метод численного решения алгебраических выражений (метод Ньютона). Наиболее полное изложение дифференциального и интегрального исчисления содержится в трактате "Метод флюксий и бесконечных рядов" (1670 – 71, опубл. 1736), в котором в механических и математических выражениях сформулированы обе взаимно обратные задачи анализа, применен метод флюксий ко многим геометрическим задачам, решены задачи интегрирования обыкновенных дифференциальных уравнений путем представления решения в виде бесконечного степенного ряда, дана формула (бином Ньютона) для любого действительного показателя.

Орем Никола (ок.1323 – 1382 гг.)

Французский математик, физик и экономист. Доказал (ок. 1350) расходимость гармонического ряда. В 1368 г. изложил учение о степени с дробными показателями. Написанный им "Трактат о сфере" сыграл значительную роль в разработке французской научной (астрономической и географической) терминологии.

Соболев Сергей Львович (род. в 1908 г.)

Советский математик. Основные труды по теории уравнений с частными производными, математической физике, функциональному анализу и вычислительной математике. Предложил новый метод решения гиперболических уравнений с частными производными, совместно со Смирновым В. И. разработал метод функционально-инвариантных решений для динамических колебаний слоистых сред. Им начато систематическое применение функционального анализа в теории уравнений с частными производными. Им же введен класс функциональных пространств и исследовано соотношение вложения для пространств. Ввел понятие обобщенного решения уравнения с частными производными и дал первое (1935) строгое определение обобщенной функции; с помощью этих понятий рассмотрел некоторые краевые задачи для уравнения с частными производными. В области вычислительной математики Соболев ввел понятие замыкаемых вычислительных алгоритмов, дал точную оценку норм погрешности кубатурных формул.

Ферма Пьер (1601 – 1665 гг.)

Французский математик. Получил важные результаты в теории чисел, алгебре, геометрии, теории вероятности. Автор ряда выдающихся работ. Ферма является одним из создателей теории чисел, с его именем связаны великая и малая теоремы Ферма. Вместе с Декартом является основоположником аналитической геометрии. В области метода бесконечно малых дал общее правило дифференцирования степенной функции, которое распространил на любые рациональные показатели.

Фурье Жан Батист Жозеф (1768 – 1830 гг.)

Французский математик. В труде "Аналитическая теория тепла" (1822 г.) вывел дифференциальное уравнение теплопроводности и разработал метод его интегрирования при различных граничных условиях. В основе его метода лежит представление функции тригонометрическими рядами (рядами Фурье). Привел первый пример разложения в тригонометрические ряды функций, которые заданы на различных участках различными аналитическими выражениями. Развил предложенный Даламбером для решения волнового уравнения метод разделения (метод Фурье) переменных для изучения задач о колебаниях струны и теплопроводности стержня.

Эйлер Леонард (1707 – 1783 гг.)

Математик, физик, механик, астроном. Родился в Швейцарии. Более 30 лет работал в Петербургской АН. Список его трудов содержит около 850 названий, в их числе несколько многотомных монографий по всем основным разделам современной ему математике и ее приложениям. Заложил основы нескольких математических дисциплин. Первый систематически ввел в рассмотрение функции комплексного переменного, вывел (1743) формулы, связывающие тригонометрические функции с показательными. Эйлер создал как самостоятельную дисциплину теорию обыкновенных дифференциальных уравнений, и заложил основы теории уравнений с частными производными. Его имя носят подстановки Эйлера (1768) при замене переменных в специальных интегралах, Эйлеровы интегралы (1731), метод ломаных Эйлера (1768) в численном решении обыкновенного дифференциального уравнения, Эйлеровы углы (1748) в преобразовании координат, функция и теорема Эйлера (1763) в теории чисел, прямая Эйлера (1765) в треугольнике, теорема Эйлера для выпуклого многогранника (1758), Эйлерова характеристика многообразия, задача Эйлера о Кенигсбергских мостах (1736). Обозначения: f(x) — 1734; e, p — 1736; sin(x), cos(x) — 1748; tg(x) — 1753; Dx, Sx — 1755; i — 1777.

Список литературы

Глейзер Г. И. История математики в школе: 7 – 8 класс. М: Просвещение, 1982.

Глейзер Г. И. История математики в школе: 9 – 10 класс. М: Просвещение, 1983.

Чистяков В. Д. Исторические экскурсы на уроках математики в средней школе. Минск: Народная освета, 1969.

Малыгин К. А. Элементы историзма в преподавании математики в средней школе. М: Учпедгиз, 1958.

Математический энциклопедический словарь. М: Сов. Энциклопедия, 1988.

Энциклопедический словарь юного математика. М: Педагогика, 1989.