Смекни!
smekni.com

Объект исследований - Солнце (стр. 3 из 4)

Среди изотопов бериллия есть только один стабильный изотоп. Это Ве-9. И два радиоактивных: Ве-7 (период полураспада около 53 суток) и Ве-10 (период полураспада несколько больше одного миллиона лет). Наиболее эффективно в ядерных процессах образуется лишь самый легкий изотоп - Ве-7. Связанно это вот с чем. При взаимодействии энергичных частиц СКЛ (наибольший вклад здесь вносят ядра водорода) с ядрами наиболее обильных средних и тяжелых элементов, составляющих атмосферу Солнца, углеродом, азотом, кислородом и железом вероятность образования Ве-7 из всех изотопов бериллия самая высокая. Однако более существенно то, что изотоп Ве-7 может возникать при так называемых реакциях ядерного синтеза элементов - когда в результате взаимодействия (слияния) двух легких ядер образуется более тяжёлое ядро.

Среди всех элементов, составляющих солнечную атмосферу, элемент гелий по своему обилию уступает лишь водороду. Он представлен в природе двумя изотопами. Не-4 наиболее распространенный и более редкий Не-3. При взаимодействии двух ядер Не-4 между собой могут образоваться изотопы лития и изотоп бериллия, Ве-7. Другие, более тяжелые, изотопы бериллия не образуются.

Реакция образования Ве-7 при взаимодействии изотопов Не-4 и Не-3 существенна потому, что это так называемая экзотермическая (то есть энергетически беспороговая) реакция. Она может протекать фактически даже при нулевой энергии взаимодействия. И хотя Не-3 гораздо менее обилен в природе, в частности в атмосфере Солнца, чем Не-4, а вероятность этой реакции не велика, ролью этой реакции пренебрегать нельзя. Поскольку, благодаря ей, свой вклад в полную концентрацию радиоактивного изотопа бериллия, Ве-7, вносят активные процессы на Солнце практически любой мощности.

То есть можно считать, что радиоактивный бериллий, изотоп Ве-7 (и только он) непрерывно образуется в атмосфере Солнца. Его концентрация может определить полную концентрацию элемента бериллия на Солнце. С другой стороны из-за того, что Ве-7 имеет сравнительно небольшое время жизни (около двух месяцев), при изменении солнечной активности в процессе 11- летнего цикла его концентрация будет уменьшаться.

Таким образом, возможно именно с этим связанны, упомянутые выше, особенности распространенности легких элементов в солнечной атмосфере: то, что распространенность бериллия выше (по крайней мере, не ниже) чем распространенность лития, что противоречит естественной распространенности этих элементов, и второе, то, что концентрация бериллия в солнечной атмосфере не постоянна. Отметим, что в результате радиоактивного распада изотопа Ве-7 образуется стабильный элемент литий. Причем только его более тяжелый изотоп Li-7. С учетом этого становится понятно, почему для атмосферы Солнца распространенность изотопа Li-7 почти в 10 раз выше распространенности изотопа Li-6.

Надо заметить, что окончательно роль радиоактивного изотопа Ве-7 для солнечной атмосферы и для межпланетной среды будет выяснена, когда его уверенно зарегистрируют в солнечном ветре.

Ядерные реакции синтеза элементов при малых энергиях взаимодействия оказываются чрезвычайно важными не только при рассмотрении вопросов образования химических элементов в природе, в частности в атмосферах звезд и нашего Солнца. Поскольку, как правило, синтезированное ядро оказывается возбужденным, то реакции синтеза элементов являются одним из важнейших источников гамма-излучения от Солнца.

Гамма вспышки в атмосфере Солнца

Итак, во время солнечных вспышек, как уже было отмечено, часть ядер различных химических элементов солнечной атмосферы ускоряется до значительных энергий. Ускоренные частицы взаимодействуют с ядрами элементов солнечной атмосферы. При этом и те, и другие переходят с определенной вероятностью в так называемое возбужденное состояние, которое, как правило, "снимается" с излучением гамма-кванта определенной энергии.

Проблемы солнечной гамма-астрономии интенсивно разрабатываются с семидесятых годов прошлого столетия до настоящего времени учеными многих стран мира, таких как США, России, Франции, Германии, Японии, Китая и др.

Первый успешный теоретический анализ гамма-излучения от солнечной вспышки, получивший на редкость точное экспериментальное подтверждение в американском космическом эксперименте при наблюдении гамма-излучения от мощных солнечных вспышек в августе 1972 года, был выполнен в Институте ядерной физики МГУ в 1967 году. К настоящему времени гамма-кванты от многих солнечных вспышек (солнечная гамма вспышка) наблюдались в околоземном космическом пространстве.

Рис. 5 Солнечная гамма-вспышка. Спектр гамма-излучения, полученный одновременно аппаратурой с космических кораблей "Венера - 13"(1) и "Венера - 14" (2). Хорошо видно, что в районе энергий квантов 0,4 - 0,6 МэВ нарушается обычный (степенной) вид спектра гамма-излучения. Это связанно с "включением " другого механизма генерации гамма-квантов.

Естественно, что величина потока гамма-квантов и его временные характеристики зависят от целого ряда параметров, определяющих саму солнечную вспышку. Таких, например, как энергетический спектр СКЛ и его временная эволюция, распределение плотности вещества солнечной атмосферы в области ядерного взаимодействия, полная длина пути, которую проходят энергичные частицы до выхода в межпланетное пространство.

Наблюдение гамма вспышек позволяет определить все эти параметры. При этом важно то, что гамма-квант ы несут нам информацию о плотных вспышечных слоях солнечной атмосферы, куда нельзя заглянуть другим способом. Анализ солнечного гамма-излучения позволил независимо подтвердить относительность понятия спокойное Солнце, ибо даже в этом состоянии в атмосфере Солнца имеется достаточно возможностей для ускорения частиц до энергий в несколько миллионов электрон-вольт. Этого хватает для осуществления ядерных реакций синтеза элементов. Образованные при этом ядра являются источником квазинепрерывного спектра гамма-излучения Солнца в интервале энергий квантов от ~ 400 КэВ до 3 МэВ.

Солнечное гамма-излучение представлено в широком спектральном диапазоне. Это и непрерывное излучение в диапазоне энергий квантов от сотен КэВ до сотен МэВ. В основном такой непрерывный спектр гамма-излучения возникает как тормозное излучение ускоренных электронов при их распространении в атмосфере Солнца и как результат распада нейтральных пи-мезонов, которые образуются в результате ядерных взаимодействий ускоренных протонов и более тяжелых частиц СКЛ с ядрами элементов солнечной атмосферы.

Кроме непрерывного гамма-спектра от солнечных вспышек хорошо наблюдается дискретный спектр гамма-излучения. Он формируется за счет гамма-излучения возбужденных ядер элементов, составляющих солнечную атмосферу и за счет аннигиляционного излучения. Это один из самых мощных источников солнечного гамма-излучения в дискретном диапазоне энергий. И в теоретическом и в экспериментальном аспекте здесь давно и успешно работают ученые ряда ведущих российских институтов - таких как Институт космических исследований РАН, Московский инженерно - физический институт, Санкт - Петербургский Физико-технический институт РАН, Институт ядерной физики МГУ.

При взаимодействии СКЛ с веществом солнечной атмосферы в возбужденное состояние переходят не только ядра элементов, составляющих саму солнечную атмосферу, но и ядра, находящиеся в составе СКЛ, то есть частицы, движущиеся с огромными скоростями. Их возбужденное состояние также снимается гамма-излучением. Однако, поскольку, эти энергичные ядра имеют значительные скорости, то происходит "уширение" энергетического диапазона излучение. Это явление хорошо известно в волновых процессах любой природы как Доплер-эффект. На осуществление доплеровского уширения гамма-линий от солнечной вспышки впервые было указано сотрудниками отдела астрофизики Санкт-Петербургского Физико-технического института РАН. Из-за такого уширения происходит частичное перекрывание энергетического диапазона гамма-излучения от отдельных скоренных ядер. В силу этого, гамма-излучение, испускаемое такими, быстро движущимися ядрами, также образует как бы квазинепрерывный спектр.

Как следует из экспериментальной ядерной физики, реакции синтеза элементов могут протекать при относительно малых энергиях взаимодействующих частиц. Такие энергетические возможности, как уже неоднократно указывалось, очень часто, осуществляются в солнечной атмосфере. Исходя из результатов анализа, впервые осуществленного сотрудниками Института ядерной физики МГУ, можно даже утверждать, что процесс синтеза элементов в атмосфере Солнца фактически протекает непрерывно. При этом в солнечной атмосфере имеется практически весь известный в природе спектр исходных элементов.

Синтезированное ядро, как правило, "заявляет" о себе испусканием характерного гамма-кванта. Однако наблюдать при современных возможностях гамма-астрономии можно лишь такие синтезированные ядра, которые возникли при столкновении, достаточно обильных в атмосфере Солнца исходных элементов. Это, водород, гелий, углерод, азот, кислород, неон, железо. Существенно при процессе синтеза элементов в атмосфере Солнца то, что в узком энергетическом диапазоне возникает огромное количество гамма-квантов со столь малой разницей в их энергии, что требуются специальная, дорогостоящая аппаратура для их раздельного наблюдения.

Например, при взаимодействии ядер углерода и кислорода синтезированные изотопы (кремний, алюминий, неон, магний, натрий и.т.д. ) излучают в диапазоне энергий от 0,4 МэВ до 3 МэВ около 100 различных по энергии квантов. Плотность "заполнения" квантами этого энергетического диапазона при этом столь велика, что вполне уместно говорить о генерации квазинепрерывного гамма-спектра в процессе синтеза элементов.