Смекни!
smekni.com

Математическая статистика (стр. 2 из 3)

Теорема. Непрерывные оценки

к к=1,…,r, получаемые методом моментов, состоятельны.

Асимптотические св-ва статистических оценок. Состоятельность, асимптотическая эффективность, асимптотическая нормальность СКТ 227 ВДВ 221.

Асимптотически эффективностью оценки

n называется конечным предел

.

Асимптотически эффективной называется такая оценка, асимптотическая эффективность к-рой равна единице.

Асимптотически нормальной называется оценка, которая в пределе сходится к нормальному распределению.

Состоятельность и асимптотическая нормальность эмпирических моментов и функций от эмпирических характеристик (БМС 40).

Теорема. Пусть F0 – функция распределения генеральной совокупности и g, Sn таковы, что

, где h – дифференцируема в точке
,
, то
, где x - н.р.с.в. с параметрами 0 и
.

Асимптотические св-ва оценок максимального правдоподобия. Метод максимального правдоподобия. Оптимальные св-ва оценок СКТ 229 ГММЕ 541 ВДВ 221 ВДВ 249.

Оценкой максимального правдоподобия называется оценка, обращающая в максимум функцию правдоподобия: L(x;

)=maxqL(x; q), или
.

Теорема. Если q1<q<q2,

,
,
,
и
, где М не зависит от q, то уравнение правдоподобия
имеет решение, которое в пределе сходится по вероятности к q0. Эта оценка наибольшего правдоподобия асимптотически нормальна и асимптотически эффективна.

Основные понятия общей теории статистических решений: пр-во решений, функция потерь и функция риска. Байесовский и минимальный подходы к задачам статистических решений (БМС 120).

Байесовский подход состоит в представлении параметра q как случайной величины с некоторой плотностью q(t), называемой априорной.

Байесовской оценкойq~, минимизирующей M(q-q~)2 является функция

, где
- апостериорное распределение q,
, ¦t(x) – функция правдоподобия, l - мера.

Минимальной называется такая оценка q~, что для любой другой оценки q

, qÎQ.

Байесовские оценки при квадратичной функции потерь. Априорный и апостериорный риск. Сравнение с эффективными оценками.Нормальное распределение в Rn. Эквивалентность различных определений и св-ва. ГММЕ 341 СКТ 164.

Нормально распределенным называется такой случайный вектор x, что его характеристическая функция равна

, где, а – вектор, а В – симметрическая матрица положительно определенной КВАФ. Любое линейное преобразование нормально распределенного случайного вектора также является нормальным случайным вектором.

Теорема. Для того чтобы вектор x был нормально распределен, необходимо и достаточно, чтобы имело место представление

, где qi – набор нормально распределенных н.о.р.с.в., g – некоторая матрица, Mxa=aa.

Распределение хи квадрат. Стьюдента, Фишера и их использование в мат. статистике СКТ 169.

Распределение Формула плотности E s
ГеометрическоеxÎQ p(x)=q(1-q)x (1-q)/q (1-q)/q2
ПуассонаxÎQ
x x
НормальноеxÎR
a s2
Гаммаx>0
Хи квадрат с k степенями свободы х³0
Стьюдента с k степенями свободыxÎR
Фишерах³0

Независимость среднего арифметического и среднего квадратичного для независимых нормально распределенных случайных величин ГММЕ 413 СКТ 237.

Теорема. Статистики

(выборочное среднее) и
(дисперсия) незав. норм. р.с.в. независимы, случайная величина s2(n-1)/s2 имеет распределение хи квадрат с (n-1)й степенью свободы.

Понятие доверительного интервала – интервальной статистической оценки и его хар-ки. Точные и асимптотические доверительные интервалы СКТ 234.

Доверительным интервалом для выборки с распределением p(x, q) называется такой отрезок, что q принимает значение из этого отрезка с вероятностью 1-a, называемой доверительной вероятностью.

Асимптотическим доверительным интервалом уровня e называется такой интервал (q1, q2), что

.

Доверительные интервалы для параметров нормального распределения СКТ 236.Доверительные интервалы для параметров биномиального распределения СКТ 240.Проверка статистических гипотез. Общие понятия: простые и сложные статистические гипотезы, критерии, ошибки 1го и 2го рода, размер, мощность критерия СКТ 197.

Статистической гипотезой называются предположения о значении параметра q для выборки с распределением p(x, q).

Простой называется статистическая гипотеза, состоящая в том, что q=q0.

Сложной называется статистическая гипотеза, предполагающая принадлежность q к некоторому мн-ву Q0.

Ошибкой первого рода называется опровержение верной гипотезы.

Ошибкой второго рода называется принятие ложной гипотезы при существующей истинной.

Критерий - правило, по которому гипотеза Н будет отвергнута, если случайная величина принимает значение из критического мн-ва S.

S критериемпроверки гипотезы называется критерий заключающийся в нахождении критического подмн-ва выборки, не котором гипотеза не верна.

Уровнем значимости называется вероятность ошибки первого рода.

Функцией мощности S критерия называется функция

то есть вероятность отвергнуть гипотезу Н0 при истинном значении параметра q.

Оптимальным, или наиболее мощным называется критерий S для которого W(S,q0)=a,W(S,q1)=maxW(S,qk) при S принадлежащем множеству всех критериев с уровнем значимости a, где q0q1– значения параметров для двух рассматриваемых гипотез.

Проверка двух простых гипотез. Лемма Неймана-Пирсона. Критерий отношения правдоподобия как наиболее мощный критерий ГММЕ 541.

j критерием называется такой критерий, согласно которому гипотеза Н отвергается, если некоторая бинарная случайная величина от выборки, принимающая свои значения с вероятностями a и 1-a соотв., принимает нулевое значение .