.
Реферат.
Нургалиев А. З. гр. МТ-31.
Павлодарский университет
Павлодар 2007г.
1. Введение
В истории математики рассмотренный нами период существования Александрийской школы носит название «Первой Александрийской школы». С начала нашей эры на основе работ александрийских математиков начинается бурное развитие идеалистической философии: снова возрождаются идеи Платона и Пифагора, и эта философия неоплатоников и неопифагорейцев быстро снижает научное значение работ новых представителей математической мысли. Но вес же математическая мысль не замирает, а время от времени проявляется в работах отдельных математиков. Второй период, в который протекала работа Александрийской школы, носит название «Второй Александрийской школы».
2. Ученые Александрпийской школы.
Афинская школа числила в своих рядах таких великих людей, как Платон и Аристотель. После смерти Аристотеля центр научной мысли переместился в Александрию (Египет), где в начале 3 в. до н.э. был основан знаменитый Александрийский Мусейон – один из главных научных центров античного мира.
2.1. Герон Александрийский
К числу представителей Александрийской школы в начале второго периода ее существования надо отнести Герона Александрийского, жившего, вероятно, в I в. до н. э. Герон был выдающимся греческим инженером и ученым. Он известен многими своими изобретениями, работами геодезического характера, а также математическими работами, относящимися главным образом к вопросам геометрической метрики. Из его работ, имеющих значение для математики, можно отметить «Метрику» и «О диоптре». В «Метрике» приводятся правила и указания для точного и приближенного вычисления площадей и объемов различных фигур и тел; среди них имеется и формула для определения площади треугольника по трем его сторонам, вошедшая в математику под именем формулы Герона. Кроме того, в этой работе указываются примеры решения квадратных уравнений и приближенного вычисления квадратных и кубических корней. Характерной особенностью «Метрики», выделяющей ее из ряда работ других греческих геометров, предшествовавших Герону, служит то обстоятельство, что в ней обычно правила даются без доказательств, а лишь выясняются на отдельных примерах. Это значительно снижает достоинства работы и, несомненно, является признаком недостаточной научной подготовки её автора. Но в области практических, приложений математики Герон превосходит многих своих предшественников. Лучшей иллюстрацией этого является его работа «О диоптре». В этом труде излагаются методы различных работ геодезического характера, причем землемерная съемка производится с помощью изобретенного Героном прибора диоптры. Этот прибор является прообразом современного теодолита. Главной его частью служила линейка с укрепленными на концах ёе визирами. Эта линейка вращалась по кругу, который мог занимать и горизонтальное, и вертикальное положение, что давало возможность намечать направления как в горизонтальной, так и в вертикальной плоскости. Для правильности установки прибора к нему присоединялись отвес и уровень. Пользуясь этим прибором и вводя фактически в употребление прямоугольные координаты, Герон мог решать на местности различные задачи: измерить расстояние между двумя точками, когда одна из них или обе недоступны наблюдателю; провести прямую, перпендикулярную к недоступной прямой линии; найти разность уровней между двумя пунктами; измерить площадь простейшей фигуры, не вступая на измеряемую площадку.
Сочинения Герона давали его современникам богатый материал, практическое использование которого вполне удовлетворяло вопросам строительства и земледелия, а потому эти сочинения пользовались большим успехом в продолжение многих столетий.
2.2. Никомах, Менелай
В конце I в. н. э. надо отметить появление трудов неопифагорейца Никомаха. Его работа «Введение в арифметику» является первым трудом по арифметике, изложенным независимо от геометрии, и потому она оказывала свое влияние на изучение арифметики не менее тысячи лет. Между тем эта работа не содержит в себе ничего особенно оригинального. Основной ее идеей является классификация чисел, причем она проводится на основах, всецело опирающихся на числовую мистику. В числовую классификацию Никомаха входят также и многоугольные числа по образцу пифагорейских. Наиболее интересным в «Арифметике» Никомаха является раздел суммирования числовых рядов. Здесь мы встречаем, например, указание на то, что кубические числа представляют собой суммы последовательных нечетных чисел. Так, 13 = 1; 23 = 3 + 5; 33 = 7 + 9 + 11; 43 = 13 + 15 + 17 + 19 и т. д.
Современником Никомаха надо считать астронома и геометра Менелая Александрийского, который написал трактат о сферических треугольниках, явившихся в свое время как бы фундаментом сферической геометрии. В этом же труде Менелая находится его знаменитая теорема, согласно которой «если какая-нибудь прямая линия пересекает три стороны треугольника или их продолжения, то произведение трех отрезков, не имеющих общих точек, равно произведению трех других отрезков».
2.3. Клавдий Птолемей
Ко II в. относится деятельность Клавдия Птолемея. Оп работал главным образом в области астрономии, причем его астрономические наблюдения относятся ко времени между 125 и 151 г. (Как астроном Птолемей разработал геоцентрическую систему мира, согласно которой Земля неподвижно покоится в центре мира, а все небесные светила движутся вокруг нее. Эта система была опровергнута Н. Коперником в его гелиоцентрической системе мира, полагающей, что центром Вселенной является Солнце, вокруг которого обращаются Земля и другие планеты, причем все планеты вращаются вокруг своих осей.) В своих работах он невольно сталкивался с понятиями тригонометрического характера, а потому ему удалось внести значительный вклад и в развитие тригонометрии. В своих астрономических работах Птолемей уже не разделял часы на дневные и ночные, как это делали египтяне, а считал их равными по своей продолжительности. Окружность он разделял на 360 градусов и каждый градус делил еще пополам. Диаметр же окружности он делил на 120 градусов, полагая, таким образом, что длина окружности в 3 раза больше ее диаметра; при этом каждый градус диаметра подразделял на 60 равных частей, а каждую из этих частей вновь разделял на 60 частей. В более позднее время эти подразделения градуса получили у римлян наименования partes minutae primae и partes minutae sekundae, что в переводе означает «части меньшие первые» и «части меньшие вторые». От этих латинских слов нами и заимствованы названия для единиц измерения углов и времени — минута и секунда.
Главная работа Птолемея называлась «Великое математическое построение астрономии в XIII книгах» или сокращенно «Мэгистэ» (в пер. с греч. «величайшая»). В историю она вошла под названием «Альмагест», которое дали ей впоследствии арабы.
В «Альмагесте» Птолемей вычисляет величины хорд всех дуг от 0° до 180о, причем значения хорд даны для дуг через каждую 1/2°. Для выполнения этой работы Птолемей вводит свою теорему, которая в истории математики носит название теоремы Птолемея и формулируется так: произведение длин диагоналей вписанного в круг четырехугольника равно сумме произведений длин его противоположных сторон. Из этой теоремы Птолемей подучил следствия, позволяющие по данному диаметру окружности и по двум хордам, стягивающим дуги a и b, вычислить хорды, стягивающие дуги a + b и a - b. Пользуясь полученными соотношениями, а также используя уменье вычислять стороны вписанных в круг правильных фигур (треугольника, квадрата, пятиугольника, шестиугольника и десятиугольника), Птолемей и составил свою таблицу хорд, предшественницу современных таблиц синусов.
В истории математики Птолемей известен также тем, что он первый усомнился в очевидности постулата Евклида о параллельных прямых и делал попытки доказать его справедливость, тем самым положив начало длинному ряду подобных же попыток позднейших геометров, пока Лобачевский не показал безуспешность таких доказательств, разъяснив их невозможность.
2.4. Папп
Последним крупным геометром Александрийских школ следует признать геометра III в. Паппа. Ему принадлежало, как полагают значительное число сочинении, из которых сохранилось лишь «Математическое собрание», да и то не в полном виде (из восьми книг этого сборника полностью утрачена первая и не хватает части второй).
«Математическое собрание» Паппа имеет для истории математики большое значение: оно содержит обзор трудов предшественников Паппа, развивает некоторые их идеи, комментирует эти труды. Благодаря этому для нас сохранились сведения о многих математических работах древних, которые не дошли в подлинниках до нашего времени. Кроме того, в работе Паппа имеются и некоторые новые и оригинальные открытия. Так как Папп не всегда называет авторов приводимых им теорем, то нам трудно судить, какие теоремы принадлежат ему самому и какие - другим авторам. Но по отношению к некоторым из них считают несомненным, что они принадлежат Паппу. Многие из этих теорем имеют значительный теоретический и практический интерес. Теорема Паппа об инволюции точек читается так: «Если на двух прямых, лежащих в одной плоскости, взять по три точки: на первой прямой точки 1, 5 и 3, а на второй—2, 4 и 6, то точки пересечения пар прямых 1—2 и 4—5, 2—3 и 5—6, 3—4 и 6— 1 лежат на одной прямой.
Большое применение имеет теорема, которая впоследствии была переоткрыта Паулем Гюльденом (1577—1643), а потому и носит имя последнего: объем тела, образованного вращением плоской фигуры вокруг какой-нибудь лежащей в ее плоскости прямой, равен произведению площади фигуры на длину окружности, описанной при вращении ее центром тяжести. Интересна предложенная и изученная Паппом спираль, которая описывается точкой, движущейся вдоль дуги четверти окружности, когда эта дуга вращается около диаметра. Из других теорем, доказанных Паппом, приведем ещё такие: «Центр тяжести треугольника принадлежит также другому треугольнику, вершины которого лежат на сторонах данного и разделяют эти стороны в одном и том же отношении»; «Прямая, соединяющая противоположные концы параллельных диаметров двух кругов, имеющих внешнее касание, проходит через точку касания». Паппу приписывается также решение задачи о проведении через той точки, лежащие на одной прямой, трех прямых, образующих треугольник, вписанный в данный круг.