Смекни!
smekni.com

Фундаментальный предел скорости гравитации и его измерение (стр. 4 из 4)

Юпитер действительно отклоняет лучи света наиболее сильно, когда находится в "запаздывающем" положении, смещенном относительно его настоящего положения назад по орбите на угол, отнесенный к центру масс солнечной системы и равный отношению орбитальной скорости Юпитера к скорости гравитации;

данный эффект "запаздывания" обусловлен аберрацией силовых линий гравитационного поля Юпитера, движущегося относительно центра масс Солнечной системы;

эффект аберрации гравитационных силовых линий указывает на конечность скорости распространения гравитационного взаимодействия;

предельная скорость распространения гравитационного взаимодействия численно равна константе скорости света в вакууме с экспериментальной точностью 20%;

эффекты свободных гравитационных волн в эксперименте пренебрежимо малы.

Мы хотели бы подчеркнуть, что предельная скорость распространения гравитационного взаимодействия была определена исключительно по форме гравитационного смещения наблюдаемого положения квазара на небе от его расчетного положения в каталоге. Сам Юпитер мы не наблюдали, так как ширина диаграммы направленности системы "VLBA - 100м антенна в Эффельсберге" существенно меньше 3'. Величина гравитационного влияния Юпитера и скорость этого влияния на отклонение лучей света квазара было определено позднее, в результате обработки данных наблюдений квазара. Таким образом, любые попытки утверждать, что мы измерили скорость радиоволн, распространяющихся от Юпитера к Земле, как заявляют некоторые зарубежные физики (Н. Асада и С. Самуэль) незнакомые ни с нашими экспериментальными данными, ни с процедурой обработки наблюдений, являются грубой ошибкой.

Перспективы детектирования и измерения скорости гравитационных волн

Можно ли считать, что измерение предельной скорости распространения гравитации по отклонению света движущимся Юпитером поставило точку в вопросе о скорости распространения гравитационного взаимодействия? Так утверждать мы не можем. Наш эксперимент действительно показал, что общая теория относительности Эйнштейна согласуется с основными постулатами специальной теории относительности. Однако наши наблюдения позволяют установить лишь верхний предел скорости распространения гравитационного взаимодействия, поскольку самих гравитационных волн мы не детектировали. Возможны теории гравитационного поля, переносчики которого - гравитоны - массивные частицы. Скорость распространения гравитационных волн в таких теориях меньше скорости света в вакууме. Наш эксперимент не позволяет непосредственно измерить скорость гравитонов. Экспериментальное доказательство существования гравитационных волн и непосредственное измерение их скорости - дело будущего.

Уже сейчас полным ходом идет разработка специальных детекторов гравитационных волн. Основной элемент такого детектора - интерферометр Майкельсона с несколькими зеркалами, подвешенными на специальной системе, позволяющей "развязать" зеркала от сейсмического шума, вызванного мелкомасштабными подвижками земной коры. Огромный вклад в создание таких детекторов внес выдающийся российский ученый, физик-экспериментатор, профессор В.Б. Брагинский, работающий на физическом факультете МГУ в г. Москве.

Наземные гравитационные детекторы создаются в США, Японии, Европе и Австралии. Строительство такого детектора в России было сорвано экономическим кризисом, последовавшим за распадом Советского Союза, хотя ряд российских лабораторий продолжает предпринимать целенаправленные шаги для изучения характеристик лазерных интерферометрических систем (В.Н. Руденко, ГАИШ МГУ). Существуют грандиозные планы строительства космических гравитационных детекторов на околосолнечной орбите (американо-европейский проект LISA). Детектор будет состоять из 3 спутников, на каждом установят лазер со специальной системой сверхвысокоточной стабилизации его частоты. Это позволит улавливать гравитационные волны, приходящие практически из любой части нашей Вселенной, в том числе и зародившиеся в момент Большого Взрыва и образующие стохастический фон, наблюдаемые свойства которого были впервые предсказаны российским физиком-теоретиком Л.П. Грищуком. LISA будет способна "увидеть" процесс слияния черных дыр в двойных системах, активно изучаемых в настоящее время в рентгеновском диапазоне российскими астрономами Р.А. Сюняевым, А.М. Черепащуком и Н.И. Шакурой. Все это даст возможность не только измерить скорость гравитационных волн, но и получить доступ к изучению физики ранней Вселенной на масштабах времени и расстояний, сопоставимых с планковскими, а также проверить теории объединения всех четырех видов фундаментальных взаимодействий - слабого, сильного, электромагнитного и гравитационного.