Введение
В алгоритмике играют важную роль жадные алгоритмы. Они просты для понимания и реализации, работают сравнительно быстро, известно много разнообразных задач, которые можно решить с помощью жадных алгоритмов. Однако не всегда можно доказать возможность применимости жадного алгоритма для нахождения точного решения многих задач. В данной статье будет рассмотрена теоретическая основа жадных алгоритмов — теория матроидов. При помощи нее можно довольно часто установить возможность применимости жадного алгоритма. Как потом выяснится, для этого необходимо, чтобы исследуемое множество являлось матроидом. Сначала будет дано определение матроида, а затем будут рассмотрены несколько стандартных задач, напрямую связанных с матроидами.
Матроид - классификация подмножеств некоторого множества, представляющая собой обобщение идеи независимости элементов, аналогично независимости элементов линейного пространства, на произвольное множество.
Аксиоматическое определение
Матроид — пара (X,I), где X — конечное множество, называемое носителем матроида, а I — некоторое подмножество множества всех подмножеств X, называемое семейством независимых множеств, то есть
Если
Если
Базами матроида называются максимальные по включению независимые множества.
Определение в терминах правильного замыкания
Пусть
Для любого х из Р:
Для любых х,у из Р:
Для любого х из Р:
Рассмотрим
1. Замыкание правильно (аксиома правильного замыкания), если
2. Для любого
1.
2.
Пара
Примеры
Универсальный матроид
Графический матроид. Множество X — множество ребер графа, независимые множества — ациклические подмножества этих ребер. Базами являются остовные леса графа.
Матричный матроид. Семейство всех линейно независимых подмножеств любого конечного множества векторов произвольного непустого векторного пространства является матроидом.
Определим множество E, как множество состоящее из {1, 2, 3, .., n} — номеров столбцов некоторой матрицы, а множество I, как множество состоящее из подмножеств E, таких, что векторы, определяемые ими, являются линейно независимыми над полем вещественных чисел R. Зададимся вопросом — какими свойствами обладает построенное множество I?
1. Множество I непусто. Даже если исходное множество E было пусто — E = ∅, то I будет состоять из одного элемента — множества, содержащего пустое. I = { {∅} }. |
2. Любое подмножество любого элемента множества I также будет элементом этого множества. Это свойство понятно — если некоторый набор векторов линейно независим над полем, то линейно независимым будет также любой его поднабор. |
3. Если A, B ∈ I, причем |A| = |B| + 1, тогда существует элемент x ∈ B − A, такой что B ∪ {x} ∈ I. |
Докажем, что в рассмотренном примере множество линейно независимых столбцов действительно является матроидом. Для этого достаточно доказать третье свойство из определения матроида. Проведем доказательство методом от противного.
Доказательство. Пусть
Дополнительные понятия
Двойственным данному матроиду называется матроид, носитель которого совпадает с носителем данного матроида, а базы — дополнения баз данного матроида до носителя. То есть X*=X, а множество баз двойственного матроида — это множество таких B*, что B*=X\B, где B — база данного матроида.
Циклом в матроиде называется такое множество A⊂X, что A∉I, и для любого B⊂A, если B≠A, то B∈I
Рангом матроида называется мощность его баз. Ранг тривиального матроида равен нулю.
Матроид Фано
Название возникло из того факта, что матроид Фано представляет собой проективную плоскость второго порядка, известная как плоскость Фано, чьё координатное поле — это двух-элементное поле. Это означает, что матроид Фано — это векторный матроид, связанный с семью ненулевыми векторами в трехмерном векторном пространстве над полем 2ух элементов.
Из проективной геометрии известно, что матроид Фано непредставим произвольным множеством векторов в вещественном или комплексном векторном пространстве (или в любом векторном пространстве над полем, чьи характеристики отличаются от 2).
Графовый матроид
Граф неориентированный и состоит из четырех вершин и семи ребер, одно из которых является петлей. Пусть E будет множеством, состоящих из ребер этого графа,
Теорема
Пусть G — граф, а
Доказательство. Необходимо доказать, что