Смекни!
smekni.com

Методы распознавания, идентификации и измерения расстояния до объектов в СТЗ ПР (стр. 2 из 3)

Среди структурных методов получения дескрипторов области, следует отметить метод, основанный на получении описания области в виде графа – скелета области, т.е. схема области. В данном методе для получения скелета применяется большое количество алгоритмов прореживания, такие как: преобразование средних осей, алгоритм Накаши и Шингала [1], волновой метод [2, 5]. Перечисленные алгоритмы прореживания связывают свою работу с бинарным изображением, что требует в случае градационного изображения, предварительной его обработки.

Одной из наиболее быстрых и простых при реализации процедур прореживания является алгоритм, разработанный Накаши и Шингалом. Данный алгоритм основан на понятиях связности пикселей изображения; прореживание производится на основе вычисления логической функции на образе окна изображения. Выбор связывающей логической функции производится на основе интуитивно введённых функций последствий объединения и разрыва.

Волновые алгоритмы часто используются для определения минимального расстояния между объектами в пространстве (оптимизационные алгоритмы компьютерной графики), а в СТЗ они получили применение для реализации функции прореживания. Для этого, в исходной точке генерируется волна, распространяющаяся по определенным законам, помечающая пройденные точки номером шага. Процесс заканчивается по достижении целевой точки. Номер шага, которым помечена целевая точка и будет расстоянием от исходной до целевой точки. Построение скелета в данном случае сводится к выделению отрезков и мест их соединения с занесением найденных данных в результирующий граф. Выделение производится с помощью анализа пути прохождения волны, с пометкой пройденного пути (для предотвращения двойного прохождения волны по изображению). В результирующий граф скелета изображения заносятся средние точки для каждой генерации волны. С уменьшением количества точек в процессе движения волны производится анализ перемещения средней точки последней генерации волны, и в граф заносятся только точки, в которых происходит изменение направления движения средней точки. Методы скелетизации дают положительные результаты при работе с бинарными изображениями сцены, однако применение их для обработки градационных изображений ограниченно погрешностями при бинаризации области объекта. Здесь следует отметить, что скелет области непосредственно не может быть использован для последующего процесса идентификации и требует применения дополнительных алгоритмов описания полученного скелета. С появлением задач автоматического распознавания печатных текстов, данный алгоритм был модифицирован для распознавания печатных и рукописных текстов [5].

С созданием средств ввода и обработки потокового цифрового видео, применимым стал метод, основанный на получении описания объектов в виде инвариантных к преобразованиям перемещения, поворота и изменения масштаба моментов. Применение данного дескриптора в случае потокового видео более целесообразно, поскольку сокращается время на обработку отдельно взятого кадра потока видеоданных. Метод использует моменты до третьего порядка. Ограничение является экспериментальным, поскольку вычисление моментов более высокого порядка требует значительных вычислительных средств. На основе только нормированных центральных моментов 2- и 3-го порядков, выводятся наборы инвариантов моментов. Наиболее применимыми стали семь инвариантов моментов, получивших в литературе название Ху-дескрипторов (HU-descriptors)

Методы идентификации объектов

Современные методы идентификации делят на две основные категории: теоретические и структурные методы. Теоретические методы основываются на количественном описании идентифицируемых объектов сцены. Структурные методы основаны на применении символических описаний и связей между ними. Обе категории методов широко применяются для идентификации образов двумерных объектов.

Наиболее простым среди теоретических методов идентификации объектов, является метод решающих функций. Метод предполагает, что перед процессом идентификации был проведен процесс распознавания (процесс описания объекта), в результате которого был получен на этапе обучения вектор

– модели объекта с действительными компонентами, где
– i-тый дескриптор рассматриваемого объекта. Если задано М классов объектов
, то задачей идентификации является определение М решающих функций
, таковых, что для любого модельного вектора
, принадлежащего классу
, выполняются неравенства:
,
. Метод позволяет произвести робастную идентификацию объекта. Он часто применяется для объектов, которые между собой мало подобны. В случае близости объектов метод может приводить к ошибочной идентификации. В качестве неравенств, применяются различные их модификации, которые зависят от конкретной системы распознавания и имеющихся дескрипторов объектов. На основе данного метода строятся также корреляционные методы распознавания. В таких методах процедуры распознавания и идентификации объединяются в единую процедуру – нахождения подобраза на более большем образе. Нахождение подобраза производится за счёт вычисления коэффициента корреляции, который может иметь вид относительного отклонения гистограммы интенсивностей подобраза от гистограммы интенсивностей текущего подобраза изображения сцены. Данный метод чувствителен к масштабированию, повороту. Применяется зачастую в системах пассивной навигации, распознавание заданных участков местности на карте при аэрофотосъёмках, участки роботизированной сборки с точным позиционированием деталей.

Другим теоретическим методом является метод потенциальных функций. Первоначально был предложен для решения задач обучения идентификации образов, а в дальнейшем был обобщён и реализован для более широкого круга задач, связанных с восстановлением и аппроксимацией функций. Метод подобен описанному выше методу, однако имеет более высокие показатели качества идентификации объектов. В основе метода заложена геометрическая интерпретация задачи идентификации, заключающаяся в представлении изображений в виде векторов в пространстве входных сигналов. Это позволяет представить задачу идентификации как обычную аппроксимационную задачу. В процессе обучения показываются точки и сообщаются значения функции в этих точках. Требуется восстановить функцию во всём пространстве предъявляемых значений в процессе работы метода. Алгоритмы метода потенциальных функций базируются на основной гипотезе о характере функций, разделяющих множества, соответствующие различным объектам [8].

Теоретические методы идентификации основываются на количественных моделях объектов, которые пренебрегают геометрическими параметрами, присущими форме объектов. В противовес теоретическим методам, структурные методы идентификации используют эти параметры для описания идентификационной модели объекта.

В основе структурных методов распознавания образов положена декомпозиция объекта на составляющие его элементарные примитивы. В данных методах более приемлемо использование дескрипторов границы, которые, как выше отмечалось, представляют собой разбиение границы на элементарные части, которые имеют собственные свойства идентификации. Такое представление данных применяется в наиболее простом методе – методе подбора индексов границ. В данном случае граница объекта представляется цепным кодом. Данный код состоит с отрезков границы, которые имеют разные направленности. Для процесса идентификации строится дерево схожести и матрица схожести. Дерево схожести представляет собой иерархическое разбиения форм отрезков в зависимости от расположения в границе объекта. Общая база данных эталонных объектов при этом представляется в виде путей следования отрезков, составляющих границы отдельного объекта. Метод применим в системах с дискретными датчиками позиционирования для плоских объектов.

Более ресурсоёмкими методами идентификации являются синтаксические методы. Эти методы включают в себя процессы распознавания (описания) и идентификации. Простейшими элементами в методе являются описания границы объекта на уровне связей её точек. В соответствии с этими связями строятся правила восстановления границы объекта – грамматики. Для задания эталонного объекта создаются из грамматик предложения, описывающие границу данного объекта. Данный метод положительно работает при описании скелета области в базе данных эталонных объектов в виде одного или нескольких предложений.

Приведённые методы распознавания и идентификации находят своё применение в различных системах технического зрения. Они предоставляют возможности создавать гибкие перепрограммируемые или самообучаемые системы распознавания для промышленных и непромышленных систем автоматизации деятельности человека в различных областях науки и техники.