Смекни!
smekni.com

Обзор методов определения форм и частот колебаний узлов и деталей (стр. 1 из 3)

Общие сведения о виброанализе

Инженеры и техники занимаются вопросами, связанными с уменьшением механических колебаний и виброизоляцией, уже с времени разработки и производства первых машин и станков, в частности машин с механическим приводом.

Необходимость точного измерения механических колебаний и виброанализа возникла с первых шагов разработки и конструирования машин, учитывающих вопросы амортизации механических колебаний и виброизоляции. Исследование механических колебаний прочных машин медленного действия в прошлом основывалось на опыте инженеров-конструкторов и применении несложных оптических приборов, измеряющих смещение механических колебаний.

В последние 15-20 лет произошло быстрое развитие техники измерения и анализа механических колебаний (виброметрии) с тем, чтобы удовлетворить всем требованиям исследования и испытания новых, легких и быстродействующих машин и оборудования. Применение пьезоэлектрических акселерометров, преобразующих механические колебания в электрические сигналы, раскрыло новые возможности точного измерения и анализа механических колебаний электронными измерительными приборами.

Источники механических колебаний

Избежать механических колебаний на практике почти нельзя, так как они обусловлены динамическими явлениями, сопровождающими присутствие допусков, зазоров и поверхностных контактов отдельных деталей машин и механизмов и сил, возникающих при вращении и возвратно-поступательном движении неуравновешенных элементов и деталей. Даже механические колебания с малой амплитудой часто вызывают резонансные колебания других элементов конструкций, усиливаются и становятся важным источником вибрации и шума.

Однако, механические колебания могут также быть полезным помощником человека. На применении искусственно генерируемых механических колебаний основываются, например, вибрационные питательные устройства, уплотнители для бетона, ультразвуковые ванны для очистки деталей, пневматические дрели и другие инструменты. Вибростенды, вибраторы и другие возбудители механических колебаний находят широкое применение при исследованиях и испытаниях изделий, узлов и деталей, подвергаемых воздействию точно определенных механических колебаний с целью измерения и анализа их физической и эксплуатационной характеристики и оценки их стойкости в отношении влияний механических колебаний и ударов.

сновным предположением успеха какой-либо работы, относящейся к механическим колебаниям, т. е. работы, целью которой является разработка машин и механизмов или эксплуатация и обслуживание находящегося на ходу оборудования, является точное определение параметров этих механических колебаний методами виброанализа.

Природа механических колебаний

Тело считают вибрирующим, если оно совершает колебательное движение относительно опорного положения равновесия. Число полных циклов движения тела за единицу времени, т. е. за с, называется частотой и выражается в единицах Гц (герц).

Движение может быть простым и содержать лишь составляющую с одной частотой, например, движение камертона, или более сложным с несколькими составляющими, развивающимися одновременно на нескольких частотах. Примером здесь может служить движение поршня двигателя внутреннего сгорания.

Встречающиеся на практике вибрации обычно являются слож-ными механическими колебаниями с многими составляющими на разных частотах. Следовательно, на основе лишь амплитудно-временной диаграммы нельзя определить ни число, ни частоты отдельных составляющих сложного колебательного процесса. Отдельные составляющие сложных механических колебаний можно обнаружить и определить путем исследования зависимости их амплитуд от частоты. Разложение механических колебаний в индивидуальные частотные составляющие называется частотным анализом. Частотный анализ является основным методом диагностики, основанием которой является исследование механических колебаний. График зависимости амплитуды или уровня определенной величины механических колебаний от частоты называется частотной спектрограммой.

Частотный анализ механических колебаний машин и механизмов нормально обнаруживает ряд выраженных частотных составляющих периодического характера, непосредственно связанных с основными движениями отдельных узлов и деталей исследуемой машины или механизма. Следовательно, частотный анализ дает возможность обнаружения отдельных источников механических колебаний.

Количественная оценка амплитуд механических колебаний

Для количественной оценки амплитуд механических колебаний, отображающей их опасность и строгость, можно использовать разные значения. На рисунке справа показаны взаимные отношения двойной амплитуды, пикового значения, среднего значения и среднеквадратичного значения колебаний с синусоидальной формой волны.

Двойная амплитуда, отображающая полный размах колебаний, является важным параметром, например, в случаях когда смещение механических колебаний детали машины является критическим с точки зрения максимально допустимых механических напряжений и зазоров.

Пиковое значение эффективно именно при оценке кратковременных механических ударов и т. д. Однако, пиковое значение отображает только максимальное значение исследуемых колебаний, а не заключает в себе их временное развитие.

Среднее значение (усредненное или абсолютное) отображает временное развитие исследуемых колебаний, но его практическое применение ограничено ввиду того, что оно не имеет непосредственной связи ни с коей физической величиной этих колебаний.

Среднеквадратичное значение (СКЗ) является самым важным, так как в нем учитывается временное развитие исследуемых колебаний и оно непосредственно отображает значение, связан-ное с энергией и, следовательно, разрушающей способностью этих колебаний.

Параметры механических колебаний: ускорение, скорость и смещение и соответствующие единицы

При рассмотрении камертона можно амплитуду волны колебаний полагать равной физическому смещению концов его плеч относительно положения покоя. Однако, в основу описания движения камертона можно положить не только смещение, а также скорость или ускорение колебаний. Форма волны и период рассматриваемых колебаний идентичны для смещения, скорости и ускорения. Главное различие этих трех параметров заключается во взаимном фазовом сдвиге их кривых, отображающих зависимость амплитуды от времени (см. рис.).

Амплитуды смещения, скорости и ускорения колебаний с синусоидальной формой волны взаимно связаны математическими функциями частоты и времени, показанными на рисунке вправо. Пренебрегая фазовыми соотношениями, т. е. опираясь на результаты измерения и анализа с усреднением во времени, скорость механических колебаний можно определить путем деления их ускорения на пропорциональный частоте фактор, а смещение можно аналогично получить делением ускорения на фактор, пропорциональный возведенной в квадрат частоте. Описанные выше операции автоматически осуществляются электронными интеграторами, встроенными в современных виброизмерительных приборах. Ускорение, скорость и смещение механических колебаний обычно выражаются в единицах международной системы единиц, соответствующих требованиям рекомендации ИСО 1000 и приведенных в таблице вправо. Ускорение механических колебаний также часто относится к ускорению силы тяжести (g), хотя эта единица и не входит в международную систему единиц согласно ИСО. К счастью, единицы g и м/с2 взаимно связаны фактором прибл. 10 (9,81), так что производимое в уме преобразование с точностью до 2 % совсем просто и быстро.

Условия выбора одного из параметров механических колебаний

Применение вибродатчика, чувствительного к ускорению, дает возможность измерения и анализа не только ускорения, а также скорости и смещения механических колебаний. Нужное преобразование ускорения в скорость и смещение обеспечивают электронные интеграторы, которыми снабжено большинство современных виброизмерительных приборов.

При одноразовом измерении механических колебаний с широкой частотной полосой играет важную роль определяемый параметр, в частности тогда, когда подлежащий измерению процесс содержит много составляющих с разными частотами. Измерение смещения приводит к подчеркиванию составляющих с низкими частотами, в то время как измерение ускорения результирует в подчеркивании значения высокочастотных составляющих.

Опытом подтверждено, что общее среднеквадратичное значение скорости, измеряемое в частотном диапазоне от 10 до 1000 Гц, наиболее точно отображает строгость и опасность механических колебаний. Возможным объяснением этого эмпирического правила является соответствие определенного уровня скорости определенному уровню энергии, так что низкочастотные и высокочастотные составляющие исследуемого процесса имеют с точки зрения энергии колебаний идентичные значения (вес). Отметим, что большинство встречающихся на практике машин генерирует механические колебания с плоским и почти линейным частотным спектром скорости.

При узкополосном частотном анализе проявляется применение того или иного параметра только наклоном строящейся на бумаге регистрирующего прибора спектрограммы (см. график в центре предыдущей страницы). Следовательно, можно вывести практическое правило: всегда предпочтительно применять тот параметр механических колебаний, частотный спектр которого имеет вид плоской кривой. Это автоматически обеспечивает оптимальную эксплуатацию виброизмерительной аппаратуры, в частности с точки зрения ее рабочего динамического диапазона, т. е. диапазона с пределами, равными наибольшему и наименьшему значениям, надежно и точно измеряемым данной аппаратурой. В соответствии с этим правилом предпочтение при частотном анализе обычно отдается ускорению или скорости механических колебаний.