Смекни!
smekni.com

Экстремумы функций (стр. 5 из 9)

a11 a12 a13… a1n

a11 a12 a1n-1

a21 a22 a23… a2n

Аналогично вторая строка определителя n-1 является сверткой элементов первой и третьей строк исходного определителя.

a11 a12 a13… a1n

a21 a22 a2n-1

a31 a32 a33… a3n

Наконец для последней строкиn-1 имеем

a11 a12 a13… a1n

an-1 1 an-1 2 an-1n-1

an1 an2 an3… ann

Если теперь применить те же опервции к определителю n-1, т. е. к (5.13), получим

1

……

a11n-3 (5.14)

где

a11 a12 … a1n-2

a21a22 … a2n-2

……………………………..

an-2 1 an-2 2… an-2 n-2

а элементы aik являются сверткой соответствующих определителей – прямоугольников.

Очевидно, повторяя эту операцию n–1 раз, получим следующую формулу, предварительно введя более простые обозначения :

a11= a1– левый угловой верхний элемент

a11= a2– левый угловой верхний элемент

a11= a3– левый угловой верхний элемент

…………………………………………

a11= an – левый угловой верхний элемент.

С учетом этого

an

………………………..

a1n-2 a2n-3… an-1 (5.15) n>2

Пример №1.

2 1 5 3

0 4 7 2 1 2*4-1*0 2*7-5*0 2*2-3*0 1 8 14 4

5 6 3 1 22 2*6-5*1 2*3-5*5 2*1-5*3 22 7 –19 -13

0 2 1 3 2*2-0*1 2*1-5*0 2*3-3*0 4 2 6

4 7 2

7 –19 –13 1 4*(-19)-7*7 4*(-13)-2*7 1 -72-49 -52-14

2 3 1 4 4*1-2*7 4*3-2*2 4 -10 8

1 -121 -66 1 -121 -66 1

4 -10 8 2 -5 4 2 (-121*4-66*5)= -121*2-33*5=

= -242 –165= -407

Пример №2.

30 2 1 5

04 1 3 6 1 3*4-0*0 3*1-2*0 3*3-0*1 3*6-5*0

12 3 5 1 33 3*2-5*0 3*3-5*2 3*5-5*1 3*1-5*5

03 4 0 6 3*3-2*0 3*4-2*2 3*0-2*1 3*6-2*5

1 2 3 4 5 3*2-1*0 3*3-1*2 3*4-1*1 3*5-1*5

12 3 9 18 -30 66 -264-108

1 6 –1 10 -22 1 69 -105 96-162

33 9 8 -2 8 33*122 66 78 120-108

6 7 11 10

-30 66 -372 30*105-66*69 30*66+69*372

1 69 -105 -66 1 -30*78-66*66 -30*12+66*372

33*122 66 78 12 33*122*(-30)

1 3150-4554 1980+25668 1 -1404 27648

33*122*(-30) -2340-4356 -360+24552 33*122*(-30) –6696 24192

-1404*24192+6696*27648 33965568-182476800-2654208

33*122*(-30) 33*122*30

31311360-182476800 15116544 15116544

33*122*30 33*122 3888

=3888

Вычесленные в порядке получения определителий n, n-1, …, 2 их верхние левые угловые элементы a1,a2,…,an являются критерием Сильвестера в части знаков, т.е.

sign a11=sign a1

sign a11=sign a2=sign a11 a12

a21 a22

………

a11… a1n

sign a11=sign an=sign

………..

an1… ann

По сути метод дает возможность вычисления определителей . Однако нас интересуют лишь знаки определителей.Это существенно упрощает задачу.

Рассмотрим функцию f(x1,x2,…,xn). имеющую экстремум,а именно максимум в точке М0(x10,x20,…,xn0).Это значит,что все коэффициенты a1, a2,…, anдолжны быть положительными. Поэтому процесс определения максимума функции в точке М0 заканчивается на любом этапе понижения определителя ,если после положительных a1, a2,…, ak коэффициент аk+1 стал отрицательным или нулевым.

Если же в точке М0 – минимум, то коффициенты a1, a2,…, anобразуют знакочередующуюся последоватнльность, а именно

a1<0, a2>0, a3<0,…

Аналогично процесс прекращается, если нарушается эта знакопеременность.

Итак, общая схема выглядит следующим образом :

1.Определяются стационарные точки функции, в которых

2.Определяются коэффициенты аik в этих точках

2f

xi xr

3.Выясняем знак первого диагонального элемента а111

а) если а11>0, то все последующие элементы а23,…,аn должны быть положительными,если в точке М0 действительно максимум

б)если а11<0, то знаки последующих элементов а23,…,аn должны чередоваться, если в точке М0 действительно минимум.

4.При нарушении какой-либо из закономерностей в п.3 процесс прекращается и формулируется вывод о том,что в точке М0 экстремума нет.

Наконец отметим следующее важное обстоятельство. Так как коэффициенты аik являются частными производными второго порядка и для дифференцируемой функции с непрерывными 2f/ xi xr в соответствии с теоремой Шварца эти частные производные не зависят от порядка дифференцирования, то аik= аki. Это важное свойство приводит к тому, что матрица (аik) является симметрической вместе со своим определителем аik Покажем, что учет этого факта сокращант объем вычислений по крайней мере вдвое .

Во-первых, покажем, что определитель n-1 также остается симметрическим,т. е. применяется операция понижения порядка инварианта и сохраняет это свойство при переходе от n-1 к n и т.д.

Диагональные элементы любого определителя, очевидно, равны сами себе.

Рассмотрим произвольный элемент аik в определителе n-1, i=k, i,k=1,2,…,n-1.

аik= аik –а1 k а1i / а11 (*)

Если переставить индексы i,k ,то

aki= аki –а1 i а1k / а11 (**)

Сравнивая (*) и (**) видим, что из того, что аik= аki следует, что аik= аki. Этим доказано, что из того, что n- симметрический определитель, определитель n-1 также симметрический.Что это дает для вычисления n-1 ?

Пусть вычислена первая строка коэффициентов а1k (k=1,2,…,n-1) определителя n-1 , т.е.

а11, а12, а13,…, а1n-1

Теперь вычислим первый столбец , он имеет вид

а11

а21

а31

…..

аn-1 1

Но ввиду симметричности коэффициентов, этот столбец совпадает со строкой. Другими словами, сосчитав элементы первой строки, первый столбец уже считать нет необходимости, его нужно просто записать. Для наглядности запишем

a11 a12 … a1 n-1

a21 a22… a2 n-1

………………….

an1 an2… an-1 n-1

Вычислим теперь элементы второй строки, начиная с а22 ,т.е. а22, а23, а24,…, а2 n-1.Эта строка полностью совпадает со вторым столбцом, начиная с а22,т.е.

а22

а31

…..

аn-1 2

Итак, второй столбец автоматически заполняется элементами второй строки.Т.е. иммем

a11 a12 а13 … a1 n-1

a21 a22 а23 … a2 n-1

n-1= a31 a32 а33 … a3 n-1

…………………………..

an-1 1 an-1 2 an-1 3 … an-1 n-1

И т.д.

Общий вывод : необходимо расчитать лишь правую треугольную часть элементов. Нижняя же левая часть определителя заполняется автоматически. Формально ее можно вообще не заполнять, т.е. оставлять в виде

a11 a12 а13 … a1 n-1

a22 а23 … a2 n-1

n-1= а33 … a3 n-1 (5.16)

…………..

an-1 n-1

Отсюда для получения следующегоопределителя можно применить правило, условно назовем, треугольника.

a11= a11 a22- a122

a22= a11 a33- a132 и т.д.

Для недиагоналных элементов схема несколько сложнее

a12= a11 a23- a13 a12 a11 a12 а13

а23 и т.д.

Пример №3.

Исследовать на экстремум функцию z=x3+y3-3xy

1.Находим

z z

---- и ----

y x

z

---- = 3x2-3y

y

z

---- = 3y2-3x

x

2.Находим стационарные точки, решая систему

3x2-3y=0

3y2-3x=0

Получили две стационарные точкм (0;0) и (1;1).

3.Находим

2z 2z 2z

------- --------- --------

x2 y2 x y

2z 2z 2z

------- =6x --------- =6y -------- = -3

x2 y2 x y

4.Для точки (0;0) имеем

a11=0 a22=0 a12= a21= -3

Для точки (1;1) иммем

b11=6 b22=6 a12= a21= -3

5.Находим

a11 a12 0 -3

a21 a22 -3 0

b11 b12 6 -3

b21 b22 -3 6

Так как <0 , то в точке (0;0) экстремума нет.

Так как >0 и a11>0, то (1;1) – точка минимма функции, причем zmin = -1.

Пример №4.

Исследовать на экстремум функцию w=x2/3+y2/3+z2/3

Ищем критические точки

2 2 2

w`x= ------ w`y= --------- w`z= ----------

3 3 x 3 3 y 3 3 z

Эти частные производные не обращаются в нуль ни при каких значениях x, y, z; они не сужествуют (обращаются в бесконечность) в точке P0(0;0;0). Точка P0 лежит внутри области определения функции w, которая представляет совокупность всех точек (x;y;z) пространства. Поэтому P0 критическая точка.

Исследуя знак разности w(P)-w(P0)= x2/3+y2/3+z2/3 вблизи точки P0, убеждаемся, что при любых отличных от нуля значениях x,y,z она сохраняет положительный знак. Поэтому P0 есть точка минимума, wmin=w(P0)=0

5.4.Экстремумы на множествах.

Следует обратить внимание на то, что мы указали необходимые и достаточные условия экстремума функции лишь во внутренней точке области определения. Таким образом, при отыскании абсолютного максимума или минимума функции необходимо наряду с внутренними критическими точками функции исследовать также точки границы области определения, поскрльку максимальное или минимальное значение функция может принять в одной из таких граничных точек.

Пусть функция f дифференцируема на открытом ограниченом G и непрерывна на его замыкании G. Пусть требуется найти наибольшее и наименьшее значения функции на множестве G. Для этого можно, например, найти все стационарные точки функции f в G, вычислить в них значения функции и выбрать, если, конечно это возможно (а теоретически возможно это, например, когда число стационарных точек конечно), точки, в которых функция принимает наибольшее и наименьшее значения из всех значений в стационарных точках. После этого следует сравнивать эти значения со значениями, которые функция принимает на границе открытого множества G, например, найдя, если это удается сделать, наибольшее и наименьшее значения функции f на границе области G. Сравнив наибольшее и наименьшее значения в стационарных точках с наибольшим и наименьшим значениями на границе множества G, мы можем, очевидно, найти искомый максимум и минимум f на G.