из сильнолегированных ПП. U
3) Импульсные, высокочастотные и СВЧ диоды. Т.к. обычный p-n переход обладает Сд и Сб, и является инерционным прибором, то на время накопления и рассасывания заряда а базе p-n переход теряет выпрямительные свойства. Для характеристики этих свойств p-n перехода принято 2 параметра:
а) время установления rпрямое
в) время восстановления rобратное
Чем меньше эти времена, тем выше частотные свойства
Импульсные fпереключателя > 1мГц
Вч fпереключателя > 150мГц
ВЧ fпереключателя > 1ГГц
4) Диоды Шоттки образуются на границе металл – полупроводник. Работает только на основных носителях (Сд = 0). Уменьшая площадь перехода, уменьшают Сб. Поэтому fпереключателя = 3 – 15 ГГц.
Применяется очень широко.
5) Фотодиоды – основаны на изменениях проводимости в зависимости от освещённости.
6) Светодиоды – используется явление изменения света в некоторых широкозонных ПП (фосфид галия, карбид кремния и т. д.) при рекомбинации е и «дырок».
Гетеропереходы, диоды с накоплением заряда, варикапы, параметрические диоды,
инжекупонные фотодиоды, фотоэлементы координатно-чувствительные фотоприёмники, лазер на основе p-n перехода, инжекупонный гетеролазер, варисторы – особенности этих специфических p-n переходов
см. [6] Вакулин, Стафеев «Физика ПП приборов».
Ранее были гомопереходы.
Гетеропереход – переход между ПП различной физико – химической природы (например Si – Ge, Si – GaAs, GaAs – GaP(фосфид галия)), причём это не обязательно p-n переходы, могут быть и n-n, p-p (различная ширина запрещённой зоны в полупроводниках)
Диоды с накоплением заряда – для формирования фронтовых сигналов.
Вариканы – ёмкость(барьерная), управляемая U
Варисторы – нелинейное полупроводниковое сопротивление
БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ(Т)
Транзистором называют ПП прибор, обладающий усилительными свойствами по мощности. Именно усиление мощности характеризует транзистор, как усилительный прибор. Нельзя говорить о транзисторе, как об усилителе тока. Тогда трансформатор тока является усилителем, хотя известно, что он усиливает ток , но «гасит» напряжение. Аналогично и транзистор напряжения – увеличивает напряжение за счёт тока.
По принципу действия различают:
- биполярные Т
- униполярные Т
Название Т определяется типом носителя в транзисторе:
основные биполярные униполярные один тип - основнойнеосновные
Биполярный транзистор представляет собой совокупность взаимодействующих встречно – включённых p-n переходов, имеющих общую область – базу.
р
Э Б КБ
Рабочей зоной является донная зона эмиттера. Тогда Т можно изобразить . Обычно, концентрация n1 >> n2, на б) это отражается значком n+. Сильно легированный электрод с меньшей площадью называется эмиттером, менее легированный с большей площадью – коллектором (собирающий). Процессы в переходах n1 – p и n2 – p взаимно влияют друг на друга, т.к. толщина базы W<1мк и существенное влияние на работу Т оказывает база (Б).
Концентрация носителей в Б может быть равномерной (однородная база), поле в Б отсутствует и движение носителей – диффузия. Такие Т называются диффузионными или бездрейфовыми.
Если примеси распределены неравномерно (см. Больюмановское равновесие в «Параметры ПП»), то в такой Б будет присутствовать внутреннее поле и движение носителей определяется не только диффузией, но и дрейфом. Такие ПП называются дрейфовыми (практически все ИМС)
На рис.б) изображён n – p – n транзистор. Может быть и p – n – p. Разница в полярности напряжений.
h + P - n
Iб (ток, обусловленный рекомбинацией)
При нормальном включении переход ЭБ смещают в прямом направлении, а БК – в обратном. При этом эмиттер инжектирует в Б е, которые, ввиду узости Б, очень незначительно рекомбинируют с «дырками», образуя Iб, а большая часть «пролетает» Б и собирается коллектором. При таком включении напряжений коллектор способен собирать только е, поэтому Э должен в основном содержать электролизные составляющие. Для этого область Э выполняют сильно легированной (n+).
В таком режиме токи IК и IЭ почти одинаковы:
IЭ = IК + Iб
Iб очень малый и обусловлен рекомбинацией основных носителей в области базы, а также инжекцией «дырок» из базы в эмиттер.
Обратно смещённый коллекторный переход имеет большое сопротивление (сотни кОм – единицы мОм) поэтому включение в цепь коллектора достаточно больших сопротивлений нагрузки практически не повлияет на величину IК, а на Rн будет выделяться большая мощность.