.
В настоящее время развитие вычислительной техники проходит, в основном, в двух направлениях:
1. развитие и усовершенствование схематических решений средств ВТ
2. усовершенствование архитектурных решений ВТ
Одним из основных показателей качества средств ВТ является производительность (быстродействие) вычислительной системы. Необходимо отметить, что основной резерв повышения производительности в настоящее время следует искать в развитии второго направления, однако, это нисколько не означает, что первое направление, как утверждают некоторые авторы, себя исчерпало.
Развитие компьютерной электроники неразрывно связано (определяется) с достижениями в области микроэлектроники. Основными элементами ЭВМ являются разнообразные интегральные схемы (ИС), представляющие собой набор электрически связанных между собой активных (полупроводниковые структуры) и пассивных (резисторы, конденсаторы) компонентов, которые выполняют определённые функции.
Основным компонентом ИС являются полупроводниковые приборы, параметры которых в основном определяют параметры ИС и, следовательно, при одинаковых архитектурных решениях ЭВМ и её параметры (в том числе и производительность).
Физические процессы, протекающие в полупроводниковых приборах невозможно объяснить не прибегая к основным положениям квантовой механики и физики твёрдого тела. Из курса физики известна двойственная природа света (волновая и корпускулярная).
В 1924г. физик де-Бройль высказал гипотезу, которая затем была подтверждена экспериментально, согласно которой такими же свойствами должны обладать и микрочастицы (электроны, протоны, атомы и т.д.). Соотношение де-Бройля:
h
hm, где
-34
h – постоянная Планка; = 0,6*10 Дж с
E – энергия частицы
- частота излучения
m – масса частицы
- скорость частицы
Так как микрочастицы (в частности электроны) обладают свойствами корпускулы и волны, то описывать их движение методом классической механики невозможно. Уравнение, описывающее их движение, было найдено Шредингером и носит его имя:
2 2 2 2 2 2 2
iђ/ t =ђ/2m( /x + /y +/z ) – U(x,y,z,) где
ђ = h/2
(x,y,z,t) – так называемая волновая функция – решение уравнения
U – потенциальная энергия частицы
В общем случае решение уравнения Шредингера встречает затруднения. Для практических задач уравнение часто существенно упрощается (например, не является функцией времени; для других задач достаточно рассматривать движение только по одной координате и т.д.).
Решая приведённое уравнение с различными ограничениями (частные случаи), можно получить фундаментальные положения, объясняющие многие процессы в твёрдом теле (физика твёрдого тела). Например, таким образом, удалось объяснить явление туннельного эффекта – преодоление частицей, имеющей энергию E потенциального барьера высотой U и конечной толщины d, даже тогда, когда U>E. Причём, легко доказывается, что при этом микрочастица, просочившаяся (туннелируемая) через барьер, сохраняет свою прежнюю энергию Е.
Как мы увидим позже, явление туннельного эффекта довольно широко используется в схемотехнике ЭВМ.
ПОЛУПРОВОДНИКИ.
В природе все вещества обладают способностью в той или иной степени проводить электрический ток. Это свойство характеризуется значением идеальной проводимости
Идеальный Диэлект- Полупроводники Полупроводники
диэлектрик рик Идеальный проводникТакое деление весьма условное, особенно между ПП и диэлектриками (принципиальных различий нет). Что касается различий между металлами и полупроводниками, то различия здесь более принципиальные.
В настоящее время, наиболее широкое применение в интегральной технологии получил ПП – кремний. Поэтому, в дальнейшем, все примеры, кроме особо оговоренных, основаны на свойствах кремния.
Подавляющее большинство полупроводников (за исключением т.н. аморфных ПП) имеют ярко выраженную кристаллическую структуру и представляют собой в основном монокристаллы. Так простейшая кристаллическая решётка Si – куб. В вершинах куба (для тетраэдра и в центрах граней) находятся атомы Si. Известно, что Si – 4-х валентный т.е. 4 электрона внешней оболочки отсутствуют. Такой уровень является энергетически неустойчивым и атом Si пытается захватить 4 недостающие е с рядом находящихся аналогичных атомов, в свою очередь заимствуя им свои внешние е. При этом возникают специфичные обменные силы, обусловленные по парным объединением валентных е соседних атомов. Такая связь называется ковалентной (или просто валентной).
-- --
| + -- -- а) b) -- --Т.к. структура кристалла регулярна, то это приводит к анизотропии - зависимости свойств от направления. Ориентация кристалла задаётся с помощью кристаллографических осей и перпендикулярных им кристаллографических плоскостей. Эти оси и плоскости обозначаются трёхзначными индексами Миллера ( оси [], плоскости () ).
Z (110) 3| 2 [101] 4 1 (100)