Предположим сначала, что игроки озабочены только максимизацией среднего дохода за партию игры – обычная цель в таких играх. Тогда игроки будут играть со своими оптимальными стратегиями:
Математическое ожидание с. в.
Но что же назвать риском всей игры?
Вычислим дисперсию выигрыша Первого при оптимальных стратегиях игроков.
Так как
Заметим, что в сумме
Заметим теперь, что если Первый играет со стратегией
| | … | | … | |
| … | | … | |
Теперь можно сделать следующий вывод:
Чуть-чуть отойдя от своей оптимальной стратегии (смотрите ниже Пример) и таким образом почти не уменьшив свой выигрыш, Первый может значительно уменьшить свой риск. При этом уменьшается и риск Второго, что отвечает и его интересам.
Чисто математически можно сказать, что в описанной ситуации риск выигрыша Первого не зависит от его стратегии непрерывно.
Рассмотрим подробно пример матричной игры с матрицей
Пример. Пусть матрица игры есть
| ||
Цена игры
|
Аналогичное верно и в отношении Второго. Кратко повторим. Примерная, но достаточно точная зависимость риска Второго в малой окрестности его оптимальной стратегии показана на рис. 3. Как видно из рис. 3 при отходе второго от своей оптимальной стратегии вправо, т. е. при увеличении вероятности у выбора им 1-й строки Первый начинает отвечать 2-й чистой стратегией и риск Второго скачком уменьшается до
Пусть
§12. Анализ доходности и риска финансовых операций
Финансовой называется операция, начальное и конечное состояния которой имеют денежную оценку и цель проведения которой заключается в максимизации дохода - разности между конечной и начальной оценками.
Почти всегда финансовые операции проводятся в условиях неопределенности и потому их результат невозможно предсказать заранее. Поэтому финансовые операции рискованны, т.е. при их проведении возможны как прибыль так и убыток (или не очень большая прибыль по сравнению с той, на что надеялись проводившие эту операцию).
Как оценить операцию с точки зрения ее доходности и риска?
Существует несколько разных способов. Наиболее распространенным является представление дохода операции как случайной величины и оценка риска операции как среднего квадратического отклонения этого случайного дохода.
Рассмотрим какую-нибудь операцию, доход которой есть случайная величина Q. Средний ожидаемый доход `Q - это математическое ожидание с.в. Q:
Рассмотрим четыре операции Q1, Q2, Q3, Q,4. Найдем средние ожидаемые доходы `Qi и риски ri операций.