Смекни!
smekni.com

Прикладная математика (стр. 13 из 14)

Правило максимизации среднего ожидаемого дохода. Доход, получаемый фирмой при реализации

-го решения, является случайной величиной
с рядом распределения

Математическое ожидание

и есть средний ожидаемый доход, обозначаемый также
. Итак, правило рекомендует принять решение, приносящее максимальный средний ожидаемый доход.

Предположим, что в схеме из предыдущего п. вероятности есть (1/2, 1/6, 1/6, 1/6). Тогда

Максимальный средний ожидаемый доход равен 7, соответствует 3-у решению.

Правило минимизации среднего ожидаемого риска. Риск фирмы при реализации

-го решения, является случайной величиной
с рядом распределения

Математическое ожидание

и есть средний ожидаемый риск, обозначаемый также
. Правило рекомендует принять решение, влекущее минимальный средний ожидаемый риск.

Вычислим средние ожидаемые риски при указанных выше вероятностях. Получаем

Минимальный средний ожидаемый риск равен 7/6, соответствует 3-у решению.

Нанесем средние ожидаемые доходы

и средние ожидаемые риски
на плоскость – доход откладываем по вертикали, а риски по горизонтали (см.рис.):

Получили 4 точки. Чем выше точка

, тем более доходная операция, .Q3

чем точка правее – тем более она

рисковая. Значит, нужно выбирать

точку выше и левее. Точка

.Q1

доминирует точку

, если
.Q2

и

и хотя бы одно из этих .Q4

неравенств строгое. В нашем случае

3-я операция доминирует все остальные.

Точка, не доминируемая никакой другой называется оптимальной по Парето, а множество всех таких точек называется множеством оптимальности по Парето. Легко видеть, что если из рассмотренных операций надо выбрать лучшую, то ее обязательно надо выбрать из операций, оптимальных по Парето. В нашем случае, множество Парето, т.е. оптимальных по Парето операций, состоит только из одной 3-й операции.

Для нахождения лучшей операции иногда применяют подходящую взвешивающую формулу, которая для пар

дает одно число, по которому и определяют лучшую операцию. Например, пусть взвешивающая формула есть
. Тогда получаем:

. Видно, что 3-я операция – лучшая, а 4-я – худшая.

С. Правило Лапласа.

Иногда в условиях полной неопределенности применяют правило Лапласа равновозможности, когда все вероятности

считают равными. После этого можно выбрать какое-нибудь из двух приведенных выше правил-рекомендаций принятия решений.

§15. Математико-статистический анализ данных

о деятельности производственного экономического объекта

Цель математико-статистического анализа данных, характеризующих поведение исследуемого экономического объекта, состоит в том, чтобы выявить тенденции изменения выпуска продукции и используемых ресурсов, установить зависимость между выпуском и затратами ресурсов и по этим тенденциям и зависимостям найти прогнозы выпуска на ближайшую перспективу.

Выявление тенденций и установление зависимостей между выпуском и ресурсами осуществляется с помощью методов экстраполяции временных рядов и регрессионного анализа, изучаемых в курсе "Теория вероятностей и математическая статистика" [ ].

Расчеты по регрессионным моделям целесообразно выполнять на персональных ЭВМ с помощью пакетов прикладных программ, имеющих в своем составе программы множественной линейной регрессии (например, Statistica for Windows, Statgraf, SAS), однако возможно их выполнение на научном калькуляторе по формулам регрессионного анализа, приведенным в [ ].

Технику проведения расчетов и получения прогнозов покажем на примере исследования экономики США. Исходные данные для расчетов, взятые из следующих источников: Economic Report of the President, 1995,Wash,1995; Statistical Abstract of the USA, 1995, Wash, 1995, приведены в следующей таблице.

Валовой внутренний продукт, (в ценах 1987 г.), основные производственные фонды (в ценах 1987 г.) и число занятых в США в 1960-1995 г.г.

№ п.п. Год

ВВП

(млрд. долл.)

Xt

ОПФ

(млрд. долл.)

Kt

Число занятых (млрд. чел.)

Lt

1 1960 1986,9 5596,9 65,8
2 1961 2035,7 5685,6 65,7
3 1962 2140,5 5849,8 66,7
4 1963 2234,2 6098,9 67,8
5 1964 2357,4 6336,1 69,3
6 1965 2493,3 6621,5 71,1
7 1966 2635,7 6921,8 72,9
8 1967 2705,6 7237,0 74,4
9 1968 2816,0 7434,0 75,9
10 1969 2891,0 8062,0 77,9
11 1970 2889,5 8416,8 78,7
12 1971 2978,2 8596,7 79,4
13 1972 3133,2 9533,6 82,2
14 1973 3298,5 9718,1 85,1
15 1974 3283,5 9455,7 86,8
16 1975 3250,2 9493,2 85,8
17 1976 3414,0 9620,9 88,8
18 1977 3568,2 9755,9 92,0
19 1978 3738,8 11217,1 96,0
20 1979 3848,6 12117,0 98,8
21 1980 3824,4 11691,4 99,3
22 1981 3883,1 11987,8 100,4
23 1982 3794,5 10717,1 99,5
24 1983 3938,5 10849,2 100,8
25 1984 4177,5 11989,2 105,0
28 1987 4544,5 13063,7 112,4
29 1988 4724,0 13382,5 115,0
30 1989 4854,2 13838,9 117,3
31 1990 5002,5 15411,8 117,9
32 1991 4881,6 14295,5 116,9
33 1992 4984,1 14252,1 117,6
34 1993 5139,9 14412,5 119,3
35 1994 5372,0 15319,8 123,1
36 1995 5604,1 15939,2 126,7
а) Анализ тенденций изменения и прогнозирование ВВП, ОПФ и числа занятых.

Анализ тенденции изменения и прогнозирование покажем на примере ВВП. Если имеет место линейный тренд, то модель изменения ВВП принимает вид

,

где

- линейный (относительно времени) тренд,

- среднее значение ВВП (значение тренда)при t=0 (
»x1 -
),

- среднегодовой прирост ВВП,