Курсовая работа студента гр. МТ-31
Нургалиев А. З.
Иновационный евразийский университет
Павлодар 2006 год.
1. Введение.
В курсовой работе рассмотрено различные методы определения коэффициентов рядов Фурье. При разработки данного вопроса было рассмотрено тригонометрическая интерполяция теории и дискретное преобразование рядов Фурье. Также была разработана программа для расчетов коэффициентов на ЭВМ.
Целью этой работы является рассмотрение возможности разложения функции в ряд Фурье и актуальность применения этого разложения в инженерно-технических расчетах, оценить ее практическую и теоретическую значимость. Главной задачей является нахождение более оптимального решения задачи определения коэффициентов на ЭВМ, позволяющего минимизировать использование системных ресурсов, сократить время вычислений с наименьшей погрешностью.
2. Разложение периодической функции.
В науке и технике часто приходится иметь дело с периодическими явлениями , т.е. такими, которые воспроизводятся в прежнем виде через определённый промежуток времени Т, называемый периодом. Примером может служить установившееся движение паровой машины, которая по истечению определённого числа оборотов снова проходит через свое начальное положение., затем явление переменного тока и т. п. Различные величины, связанные с рассматриваемым периодическим явлением, по истечении периода Т возвращаются к своим прежним значениям и представляют, следовательно, периодические функции от времени t, характеризуемые равенством
Таковы например, сила и напряжение переменного тока или – пример паровой машины – путь, скорость и ускорение крейцкопфа, давление пара, касательное усилие в пальце кривошипа и т. д.
Простейшей из периодических функций (если не считать постоянной) является синусоидальная величина:
Из подобных простейших периодических функций могут быть составлены и более сложные. Наперед ясно, что составляющие синусоидальные величины должны быть разных частот, ибо, как легко убедится, сложение синусоидальных величин одной и той же частоты не дает ничего нового, поскольку приводит опять к синусоидальной величине, притом той же частоты. Наоборот, если сложить несколько величин вида
которые , если не считать постоянной, имеют частоты
кратные наименьшей из них,
Т,
то получится периодическая функция (с периодом Т), но уже существенно отличная от величин типа (2).
Для примера мы воспроизводим здесь сложение трех синусоидальных величин:
график этой функции по своему характеру уже значительно разнится от синусоиды. Еще в большей степени это имеет место для суммы бесконечного ряда, составленного из величин вида (2).
Теперь естественно поставить обратный вопрос: можно ли данную периодическую функцию
причем
Геометрически это означает, что график периодической функции получается путем наложения ряда синусоид. Если же истолковать каждую синусоидальную величину механически как представляющую гармоническое колебательное движение, то можно также сказать, что здесь сложное колебание, характеризуемое функцией
Если за независимую переменную выбрать
то получится функция от x:
тоже периодическая, но со стандартным периодом
Развернув члены этого ряда по формуле для синуса суммы и положив
мы придем к окончательной форме тригонометрического разложения:
в которой мы всегда и будем его рассматривать. Здесь функция от угла x, имеющая период
Мы пришли к разложению функции в тригонометрический ряд, отправляясь от периодических, колебательных явлений и связанных с ними величин. Важно отметить, однако, уже сейчас, что подобные разложения часто оказываются полезными и при исследовании функции, заданных лишь в определенном конечном промежутке и вовсе не порожденных никакими колебательными явлениями.
3.1.1. Схема Рунге.
Разложение функции в ряд Фурье, или гармонический анализ, оказывается нужным во многих чисто практических вопросах машиноведения, электротехники и пр. Но в этих случаях очень редко приходится непосредственно пользоваться формулами Эйлера-Фурье:
для вычисления коэффициентов разложения. Дело в том, что функции, которые нужно подвергнуть гармоническому анализу, обыкновенно задаются таблицей своих значений или графиком. Таким образом, аналитического выражения функции в нашем распоряжении нет; иногда к самому гармоническому анализу прибегают именно для того, чтобы таким путем получить хотя бы приближенное аналитическое выражение для функции. В этих условиях для вычисления коэффициентов Фурье нужно обратится к приближенным методам. Разумеется, на практике приходится пользоваться лишь немногими первыми членами тригонометрического разложения. Коэффициенты ряда Фурье в большинстве случаев убывают, а с ними быстро падает и влияние далеких гармоник.
Обычно дается (или снимается с графика) ряд равноотстоящих ординат, т.е. ряд значений функции
3.1.1.1. Схема для двенадцати ординат.
Пусть, скажем, промежуток от 0 до
отвечающие точкам деления
тогда по формуле трапеции имеем (конечно, лишь приближенно!):
Ввиду периодичности нашей функции