Однако основным предметом нашего разговора является не астрофизика черных дыр, а исследование их влияния на структуру пространства-времени.
Согласно теории Эйнштейна черная дыра представляет собой бездонный провал в пространстве-времени, падение в который необратимо. Что упало, то пропало в черной дыре навеки.
У черных дыр очень интересные свойства. После коллапса звезды в черную дыру ее свойства будут зависеть только от двух параметров: массы и углового момента вращения. То есть, черные дыры представляют собой универсальные объекты, то есть, их свойства не зависят от свойств вещества, из которого они образованы. При любом химическом составе вещества исходной звезды свойства черной дыры будут одними и теми же. То есть, черные дыры подчиняются только законам теории гравитации — и никаким иным.
Другое любопытное свойство черных дыр заключается в следующем: предположим, вы наблюдаете процесс, в котором участвует черная дыра. Например, можно рассмотреть процесс столкновения двух черных дыр. В результате из двух черных дыр образуется одна более массивная. Этот процесс может сопровождаться излучением гравитационных волн, и уже построены детекторы с целью их обнаружения и измерения. Процесс этот теоретически просчитать весьма непросто, для этого нужно решить сложную систему дифференциальных уравнений. Однако имеются и простые теоретические результаты. Площадь сферы Шварцшильда получившейся черной дыры всегда больше суммы площадей поверхностей двух исходных черных дыр. То есть, при слиянии черных дыр площадь их поверхности растет быстрее массы. Это так называемая «теорема площадей», она была доказана Стивеном Хокингом (Steven Hawking) в 1970 году.
2.Образование черных дыр.
Процессы образования первичных черных дыр с массой, меньшей солнечной, могли происходить лишь в адронную эру, когда средняя плотность вещества была достаточно высока. Первичных черных дыр образуется тем больше, тем больше была амплитуда начальных неоднородностей и чем “мягче” уравнения состояния вещества в момент их образования. Дальнейшая судьба первичных черных дыр зависит от их массы. Черные дыры с массой от 1015 до 1033 г могли бы доживать до настоящего времени и оказаться “живыми свидетелями” процессов, происходивших во времени 10-23—10-5 с после “большого взрыва”.
Пока в недрах звезды происходят термоядерные реакции, они поддерживают высокую температуру и давление, препятствуя сжатию звезды под действием собственной гравитации. Однако со временем ядерное топливо истощается, и звезда начинает сжиматься. Расчеты показывают, что если масса звезды не превосходит трех масс Солнца, то она выиграет «битву с гравитацией»: ее гравитационный коллапс будет остановлен давлением «вырожденного» вещества, и звезда навсегда превратится в белый карлик или нейтронную звезду. Но если масса звезды более трех солнечных, то уже ничто не сможет остановить ее катастрофического коллапса и она быстро уйдет под горизонт событий, став черной дырой. У сферической черной дыры массы M горизонт событий образует сферу с окружностью по экватору в 2p раз большей «гравитационного радиуса» черной дыры RG = 2GM/c2, где c – скорость света, а G – постоянная тяготения. Черная дыра с массой 3 солнечных имеет гравитационный радиус 8, 8 км.
Момент превращения звезды в чёрную дыру
Если астроном будет наблюдать звезду в момент ее превращения в черную дыру, то сначала он увидит, как звезда все быстрее и быстрее сжимается, но по мере приближения ее поверхности к гравитационному радиусу сжатие начнет замедляться, пока не остановится совсем. При этом приходящий от звезды свет будет слабеть и краснеть, пока не потухнет совсем. Это происходит потому, что в борьбе с гигантской силой тяжести свет теряет энергию и ему требуется все больше времени, чтобы достичь наблюдателя. Когда поверхность звезды достигнет гравитационного радиуса, покинувшему ее свету потребуется бесконечное время, чтобы достичь наблюдателя (и при этом фотоны полностью потеряют свою энергию). Следовательно, астроном никогда не дождется этого момента и тем более не увидит того, что происходит со звездой под горизонтом событий. Но теоретически этот процесс исследовать можно.
Расчет идеализированного сферического коллапса показывает, что за короткое время звезда сжимается в точку, где достигаются бесконечно большие значения плотности и тяготения. Такую точку называют «сингулярностью». Более того, общий математический анализ показывает, что если возник горизонт событий, то даже несферический коллапс приводит к сингулярности. Однако все это верно лишь в том случае, если общая теория относительности применима вплоть до очень маленьких пространственных масштабов, в чем мы пока не уверены. В микромире действуют квантовые законы, а квантовая теория гравитации пока не создана. Ясно, что квантовые эффекты не могут остановить сжатие звезды в черную дыру, а вот предотвратить появление сингулярности они могли бы.
Современная теория звездной эволюции и наши знания о звездном населении Галактики указывают, что среди 100 млрд. ее звезд должно быть порядка 100 млн. черных дыр, образовавшихся при коллапсе самых массивных звезд. К тому же черные дыры очень большой массы могут находиться в ядрах крупных галактик, в том числе и нашей.
Как уже отмечалось, в нашу эпоху черной дырой может стать лишь масса, более чем втрое превышающая солнечную. Однако сразу после Большого взрыва, с которого ок. 15 млрд. лет назад началось расширение Вселенной, могли рождаться черные дыры любой массы. Самые маленькие из них в силу квантовых эффектов должны были испариться, потеряв свою массу в виде излучения и потоков частиц. Но «первичные черные дыры» с массой более 1015 г могли сохраниться до наших дней.
Эта трёхмерная иллюстрация показывает, как вблизи вращающейся чёрной дыры перекручиваются силовые линии магнитного поля в падающей на чёрную дыру плазме. Чёрная сфера в центре рисунка - это сама чёрная дыра, а жёлтая область вокруг неё представляет область закрученного пространства. Красные линии показывают силовые линии магнитного поля, проходящие через область закрученного пространства, а зелёные - силовые линии, ещё не входящие в эту область.
Современные суперкомпьютеры имитируют мощные энергетические джеты (струи), выходящие из чёрных дыр - самых экзотических и мощных объектов во Вселенной.
"Эти исследования помогут нам открыть загадку чёрных дыр и подтвердить, что вследствие их вращения действительно происходит выход энергии, " - говорит астрофизик Дэвид Мейер (David Meier), один из соавторов статьи, которая скоро выйдет в международном научном журнале Science.
Чёрные дыры - это сверхплотные объекты с такой сильной гравитацией, что даже свет не может из них выйти. Чёрные дыры захватывают в себя звёзды и любое другое, приблизившееся к ним, вещество, включая другие чёрные дыры. Эти необычные объекты образуются одним из двух способов - при коллапсе звезды или когда много звёзд и чёрных дыр коллапсируют вместе в ядре галактики.
Оба типа чёрных дыр могут вращаться очень быстро, увлекая за собой пространство вокруг них. Когда много вещества падает на чёрную дыру, оно закручивается как в водовороте. С помощью рентгеновских и радио-наблюдений астрономы могут быть свидетелями таких событий, в том числе и струй из чёрных дыр, но они не могут увидеть саму чёрную дыру.
"Мы не можем совершить путешествие к чёрной дыре, и мы не можем сделать её в лаборатории - поэтому мы используем суперкомпьютеры, " - продолжает Мейер. С помощью компьютеров учёные объединяют данные о плазме, падающей на чёрную дыру, и свои познания того, как гравитация и магнитные поля могут воздействовать на плазму. Учёные также исследуют способы того, как магнитное поле может использовать энергию вращения чёрной дыры и образовывать мощные струи.На этих картинках представлена компьютерная эволюция чёрной дыры. Слева вверху - плазма пока медленно падает по направлению к чёрной дыре, силовые линии магнитного поля в плазме показаны белыми линиями. На следующих картинках движение плазмы сильно ускоряется.Однако, вращающаяся чёрная дыра закручивает само пространство (и силовые линии магнитного поля) и испускает мощное электромагнитное излучение вдоль северного и южного полюсов (показано красным и белым цветом), которое захватывает с собой частицы плазмы и образует струи.
Феномен струй был предсказан Роджером Блэндфордом и Романом Знажеком в 1970-х годах. Новые компьютерные исследования подтверждают это предсказание. Последние работы были проведены в конце 2001-го года с помощью суперкомпьютера японского института National Institute for Fusion Science.
Объекты со струями в ядрах галатик были идентифицированы в начале 1900-х годов. В 1960-х годах учёные исследовали возможность того, что этими объекты со струями могут быть сверхмассивные чёрные дыры с массами от одного миллиона до нескольких миллиардов масс Солнца.
В 1990-х годах было установлено, что такие струи могут испукаться менее массивными чёрными дырами в двойных звёздных системах. Чёрная дыра с массой в десять масс Солнца может образоваться при коллапсе звезды массой от 20 до 30 масс Солнца. При этом образуется крошечный невидимый объект размером всего лишь в несколько километров, но с очень мощным гравитационным полем. Сверхмассивные чёрные дыры образуются при коллапсе большого количества звёзд и чёрных дыр в ядрах галактик.