Смекни!
smekni.com

Потоки космических лучей в максимуме кривой поглощения в атмосфере и на границе атмосферы (1957–2007) (стр. 1 из 3)

Ю.И. Стожков, Н.С. Свиржевский, Г.А. Базилевская, А.К. Свиржевская, А.Н. Квашнин, М.Б. Крайнев, В.С. Махмутов, Т.И. Клочкова , Физический институт им. П.Н. Лебедева Российской академии наук

Введение

В 50-х годах 20-го столетия академик С.Н. Вернов предложил проводить измерения потоков космических лучей в атмосфере Земли методом регулярного зондирования. Основными задачами эксперимента были исследования модуляционных эффектов галактических космических лучей, механизмов ускорения частиц во вспышечных процессах на Солнце и распространения солнечных космических лучей в межпланетной среде. В середине 1957 года С.Н. Вернов вместе с профессором А.Н. Чарахчьяном воплотил эту идею в жизнь, и с тех пор регулярные измерения потоков заряженных частиц в атмосфере полярных и средних широт проводятся вплоть до настоящего времени. За весь период измерений выпущено около 80 тысяч радиозондов.

Огромный объем экспериментальных работ по измерению космических лучей в атмосфере на высокоширотных и среднеширотных станциях был выполнен сотрудниками Физического института им. П.Н. Лебедева Российской академии наук (ФИАН) в кооперации с несколькими академическими институтами и институтами других ведомств. В их число входят Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына Московского государственного университета им. М.В. Ломоносова (НИИЯФ МГУ, руководитель работ – д.ф.-м.н. Т.Н. Чарахчьян), Казахский государственный университет им. С.М. Кирова (КазГу, Алма-Ата, руководитель работ – профессор Е.В. Коломеец), Полярный геофизический институт РАН (ПГИ РАН, Апатиты, руководитель работ – д.ф.-м.н. Э.В. Вашенюк), Ереванский физический институт им. А.И. Алиханяна (ЕРФИ, руководитель работ – к.ф.-м.н. Г.А. Асатрян), Космофизическая обсерватория Института космофизических исследований и аэрономии им. Ю.Г. Шафера Сибирского отделения Российской академии наук (ИКФИА СО РАН, Тикси, руководитель работ – к.ф.-м.н. А.М. Новиков), Полярный полигон Института земного магнетизма и распространения радиоволн (теперь Институт солнечно-земной физики) Сибирского отделения РАН (ИСЗФ СО РАН, Норильск, руководитель работ – к.ф.-м.н. В.П. Карпов), Ленинградский филиал Института земного магнетизма, ионосферы и распространения радиоволн РАН (ЛО ИЗМИРАН, Воейково, руководитель работ – д.ф.-м.н. М.И. Тясто), Крымская астрофизическая обсерватория (руководитель работ – д.ф.-м.н. А.А. Степанян), Институт прикладной геофизики им. Е.К. Федорова Росгидромета (ИПГ, Москва, руководитель работ – д.ф.-м.н. Н.К. Переяслова), Университет г. Кампинас, Бразилия (руководитель работ – доктор И.М. Мартин). С 1963 года измерения космических лучей в атмосфере проводятся на российской антарктической станции Мирный при постоянной поддержке и помощи Арктического и Антарктического научно-исследовательского института Росгидромета (ААНИИ).

После распада СССР в начале 90-х годов научные исследования в России практически перестали финансироваться. Регулярные измерения космических лучей в атмосфере удалось сохранить благодаря поддержке академика А.Е. Чудакова, который убедил руководство Российской академии наук в необходимости продолжать эти работы. Большую помощь в финансировании и проведении измерений оказали и продолжают оказывать центральная дирекция Физического института им. П.Н. Лебедева, Российский фонд фундаментальных исследований, целевая программа фундаментальных исследований Президиума РАН «Нейтринная физика».

Описание эксперимента

Для регистрации космического излучения в стратосфере были разработаны специальный радиозонд, наземная приемная аппаратура и стенды для градуировки детекторов частиц и бародатчиков. Большой вклад в создание аппаратуры и проведение измерений внесли инженеры Долгопрудненской научной станции ФИАН П.Н. Агешин, В.В. Баяревич, А.Е. Голенков, А.Ф. Красоткин, В.Н. Макунин и другие. Датчиками заряженных частиц в радиозонде являются газоразрядный счетчик СТС-6 и телескоп из двух таких же счетчиков. Цилиндрический счетчик СТС-6 имеет рабочую длину 98 мм, диаметр 19 мм. Толщина стальных стенок равна 50 мг?см–2 и определяет пороговое значение энергии регистрируемых электронов Еепор = 200–300 кэВ и протонов Еpпор = 5 МэВ. Эффективность регистрации ?-квантов счетчиком меньше 1%. Телескоп содержит 7-мм алюминиевый фильтр между счетчиками, который, совместно со стенками счетчиков, определяет пороговые значения энергии электронов Еепор = 5 МэВ и протонов Еpпор = 30 МэВ. Эффективность регистрации ?-квантов телескопом равна нулю. Расстояние между центрами верхнего и нижнего счетчиков телескопа равно 26 мм. Геометрические факторы счетчика Гсч и телескопа Гтел зависят от углового распределения частиц, падающих на детекторы. Для изотропного распределения частиц в верхней полусфере Гсч = 16.4 см2 и Гтел = 17.8 см2?ср. В атмосфере близкими к изотропному являются распределения заряженных частиц в максимуме кривой поглощения и распределение первичных частиц на границе атмосферы. Более подробное описание эксперимента приводится в [1–5].

В 1960-е годы в атмосфере Земли на высоких, средних и низких широтах в северном полушарии проводились регулярные измерения потоков ?-квантов с энергией Е? ? 20 кэВ. Использовалась стандартная аппаратура, в которой детектором ?-квантов был кристалл NaJ(Tl) диаметром 20 мм и высотой 20 мм [6].

Обработка экспериментальных данных проводилась на Долгопрудненской научной станции ФИАН. Огромный труд в эту работу был вложен инженерами, техниками и лаборантами ДНС Г.В. Ястребцевой, А.Ф. Бирюковой, К.А Богатской, А.М. Истратовой, В.И. Обрываловой, Г.В. Клишиной, О.А. Шишковой, Е.Г. Плотниковой, Г.И. Плугарь и многими другими.

Таблица 1. Пункты и периоды измерений потоков космических лучей и γ-квантов в атмосфере

Пункт измерений Географические координаты Rc, ГВ Период измерений
Ст. Лопарская, ст. Оленья, Апатиты, Мурманская область 68o 57'C; 33o03'B 67o 33C; 33o20'B 0.6 07.1957–наст. время 03.1965–12.1968 (γ)
Долгопрудный, Московская область 55o 56'С; 37o 31'В 2.4 07.1957–наст. время 10.1964–12.1969 (γ)
Алма-Ата, Казахстан 43o 15'С; 76o 55'В 6.7 03.1962–04.1993
Обс. Мирный, Антарктида 66o 34'Ю; 92o 55'В 0.03 03.1963–наст. время
Симеиз, Крым 44o 00'С; 34o 00В 5.9 03.1958–12.1961 03.1964–04.1970 10.1964–12.1969 (γ)
Воейково, Ленинградская область 60o 00'С; 30o 42'В 1.7 11.1964–03.1970
Норильск, Красноярский край 69o 00'С; 88o 00'В 0.6 11.1974–06.1982
Ереван, Армения 40o 10'С; 44o 30'В 7.6 01.1976–04.1989
Тикси, Якутия 71o 36'С; 128o 54'В 0.5 02.1978–09.1987
Дальнереченск, Хабаровский край 45o 52'С; 133o 44В 7.35 08.1978–05.1982
Ст. Восток, Антарктида 78o 47'Ю; 106o87'В 0.00 01.1980–02.1980
Баренцбург, Норвегия 78o 36'С; 16o 24'В 0.06 05.1982, 03–07.1983
Кампинас, Бразилия 23o 00'Ю; 47o 08'З 10.9 01.1988–02.1991

В таблице 1 приведены некоторые характеристики пунктов регулярных измерений потоков заряженных частиц и γ - квантов в атмосфере. Измерения проводятся на широтах с различными геомагнитными порогами Rc и охватывают интервал высот от уровня земли до 30–35 км. Атмосфера Земли, кроме того, использовалась как естественный анализатор частиц по жесткости (энергии).

На уровне наблюдения x в атмосфере вклад в скорость счета детекторов определяется первичными частицами с жесткостью выше некоторой пороговой величины, называемой жесткостью атмосферного обрезания Ra, если Ra > Rc, или геомагнитным порогом Rc, если Ra < Rc. Зависимость величины Ra от атмосферного давления х была установлена по данным широтных измерений и имеет вид Ra = 4.10–2x0.8, где Ra дано в ГВ, х в г.см–2 [7].

В течение всего периода наблюдений использовались одни и те же детекторы заряженных частиц (газоразрядные счетчики СТС-6) и γ-квантов (кристалл NaJ(Tl)) и одни и те же стенды, на которых проводилась их градуировка. Благодаря этому, мы имеем однородные ряды данных, которые представлены в таблицах. Наиболее длинные ряды данных получены в измерениях в Мурманской области и на среднеширотной станции (г. Долгопрудный Московской области), которые охватывают период с июля 1957 года по настоящее время.

Рис. 1а. Зависимость скорости счета заряженных частиц N1(х) от атмосферного давления х (кривые поглощения) по данным одиночного газоразрядного счетчика. Показаны средние за месяц значения на северной полярной широте с геомагнитным порогом Rс = 0.6 ГВ (черные точки) и южной полярной широте с Rс = 0.03 ГВ (открытые кружки), а также в северном полушарии на средней широте с Rс = 2.4 ГВ (темные треугольники) и низкой широте с Rс = 6.7 ГВ (светлые квадраты). Цифрами у кривых указаны значения Rс. Среднеквадратичные ошибки данных не превышают размеров символов.

Рис. 1б. То же, что на рис. 1а, для скорости счета N2(х), измеренной телескопом.

В качестве примера на рис. 1а, б показаны среднемесячные высотные зависимости скорости счета заряженных частиц, измеренной одиночным счетчиком N1(x) и телескопом N2(x), на разных широтах в период минимума солнечной активности в июле 1987 года. Отчетливо видны максимумы значений N1m и N2m. Значения максимальных потоков космических лучей в атмосфере имеют, очевидно, минимальную статистическую ошибку и не зависят от точности определения высоты или атмосферного давления. Данные в максимуме кривой поглощения используются ниже для определения потоков первичных космических лучей на границе атмосферы. Аналогичные высотные зависимости в атмосфере имеют и потоки γ-квантов [6].

В таблицах 3–27 представлены среднемесячные значения потоков космических лучей (галактических космических лучей и вторичных заряженных частиц, образованных ими в атмосфере) по данным одиночного счетчика и телескопа в максимуме кривой поглощения (N1m и N2m и их среднеквадратичные ошибки σ1 и σ2) для пунктов и периодов времени, указанных в таблице 1. В таблицах 28–30 также приведены среднемесячные значения потоков γ-квантов Nγm с энергией Е> 20 кэВ в максимуме кривой поглощения в атмосфере для пунктов и периодов времени, указанных в таблице 1.