Определение 1.6. Элемент х А - *-алгебры называется унитарным, если хх* = х*х = е, иначе говоря, если х обратим и х = (х*)-1.
В примере 1 п.1.2. унитарные элементы – комплексные числа с модулем, равным 1.
Унитарные элементы А образуют группу по умножению – унитарную группу А. Действительно, если x и y – унитарные элементы *-алгебры А, то
((хy)*)-1 = (у*х*)-1 =(х*)-1 (y*)-1 = xy,
поэтому xy унитарен, и так как ((х-1)*)-1= ((х*)-1)-1 = х-1, то х-1 унитарен.
1.5. Гомоморфизм и изоморфизм алгебр
Определение 1.7. Пусть А и В – две *-алгебры. Назовем гомоморфизмом (*-гомоморфизмом) А в В такое отображение f множества А в В, что
f (x + y) = f (x) + f (y),
f (αx) = α f (x),
f (xy) = f (x) f (y),
f (x*) = f (x)*
для любых х,y А, α С. Если отображение f биективно, то f называют изоморфизмом (*-изоморфизмом).
Определение 1.8. Совокупность I элементов алгебры А называется левым идеалом, если:
(i) I≠ A;
(ii) Из х, y I следует x + y I;
(iii) Из х I, аα А следует αх I.
Если I = А, то I называют несобственным идеалом.
Аналогично определяется и правый идеал. Идеал, являющийся одновременно и левым, и правым, называется двусторонним.
Всякий идеал автоматически оказывается алгеброй.
Пусть I – двусторонний идеал в алгебре А. Два элемента х, y из А назовем эквивалентными относительно идеала I, если х-y I. Тогда вся алгебра А разбивается на классы эквивалентных между собой элементов. Обозначим через А совокупность всех этих классов. Введем в А1 операции сложения, умножения на число и умножения, производя эти действия над представителями классов. Так как I – двусторонний идеал, то результат операций не зависит от выбора этих представителей.
Следовательно, А1 становится алгеброй. Эта алгебра называется фактор-алгеброй алгебры А по идеалу I и обозначается A/I.
*-гомоморфизм алгебр описывается при помощи так называемых самосопряженных двусторонних идеалов.
Определение 1.9. Идеал I (левый, правый или двусторонний) называется самосопряженным, если из х Iследует х* I.
Самосопряженный идеал автоматически является двусторонним. Действительно, отображение х → х* переводит левый идеал в правый и правый идеал в левый; если поэтому отображение х → х* переводит I в I, то Iесть одновременно и левый и правый идеал.
В фактор-алгебре A/Iпо самосопряженному двустороннему идеалу Iможно определить инволюцию следующим образом. Если х-y I, то х*-y* I. Поэтому при переходе от х к х* каждый класс вычетов х по идеалу I переходит в некоторый другой класс вычетов по I. Все условия из определения 1.2. выполнены; следовательно, A/Iесть *-алгебра.
Если х → х΄ есть *-гомоморфизм А на А΄, то полный прообраз I нуля (то есть ядро данного гомоморфизма) есть самосопряженный двусторонний идеал в А. Фактор-алгебра A/I *-изоморфна *-алгебре А΄.
Обратно, отображение х → [х] каждого элемента х А в содержащий его класс вычетов по I есть *-гомоморфизм алгебра А на A/I.
§ 2. Представления
2.1. Определения и простейшие свойства представлений.
Определение 2.1. Пусть А - *-алгебра, Н – гильбертово пространство. Представлением А в Н называется *-гомоморфизм *-алгебры А в *-алгебру ограниченных линейных операторов L(H).
Иначе говоря, представление *-алгебры А в Н есть такое отображение из А в L(H), что
π (x+y) = π(x) + π(y), π (α x) = απ(x),
π (xy) = π(x)π(y), π (x*) = π (x)*
для любых х, y А и α С.
Определение 2.2. Два представления π1 и π2 инволютивной алгебры А в Н1 и Н2соответственно, эквивалентны (или унитарно эквивалентны), если существует унитарный оператор U, действующий из гильбертова пространства Н1 в гильбертово пространство Н2, переводящий π1(х) в π2(х) для любого х А, то есть
Uπ1(х) = π2(х)U для всех х
А.Определение 2.4. Подпространство Н1 Н называется инвариантным, относительно представления π, если π (А)Н1 Н1.
Если Н1инвариантное подпространство, то все операторы π(х) (х А) можно рассматривать как операторы Н1. Сужения π(х) на Н1 определяют подпредставления π1*-алгебры А в Н1.
Теорема 2.1. Если Н1 инвариантное подпространство Н, то его ортогональное дополнение также инвариантно.
Доказательство. Пусть f ортогонален к Н1, то есть (f, g) = 0 для всех g Н1. Тогда для любого х А (π(х)f, g) = (f, π(х)*g) = (f, π(х*)g) =0, так как π(х*)g Н1. Следовательно, вектор π(х)f также ортогонален к Н1.
Обозначим через Р1 оператор проектирования в Н на подпространство Н1 Н1.
Теорема 2.2.Н1 – инвариантное подпространство тогда и только тогда, когда все операторы представления перестановочны с оператором проектирования Р1 на Н1.
Доказательство. Пусть Н1 – инвариантное подпространство и f Н1, но также π(х)f Н1. Отсюда для любого вектора f Н
π(х)Р1f Н1
следовательно, Р1π(х)Р1f = π(х)Р1f ,
то есть Р1π(х)Р1 = π(х)Р1.
Применяя операцию инволюции к обеим частям этого равенства и подставляя затем х* вместо х, получаем, что также
Р1π(х)Р1 = Р1π(х).
Следовательно, Р1π(х) = π(х)Р1; операторы Р1 и π(х) коммутируют.
Обратно, если эти операторы перестановочны, то для f Н1