Смекни!
smekni.com

Алгоритми і методи обчислення (стр. 3 из 4)

За математичну модель у цьому випадку може правити сукупність розв'язків рівнянь (6), наведена нижче:

(1.7)

де

і
- початкові значення кутів визначаються
і
;
- частота власних (нутаційних) коливань гіроскопа;
,
,
,
,
,
визначаються сукупністю співвідношень:

;
;
;
;

;
;
;
;

- відносна частота коливань моментів сил;
і
- початкові значення кутових швидкостей
і
.

Рух гіроскопа за цими співвідношеннями може бути визначений у довільний момент часу.

Але як математичну модель можна також розглядати і первісну систему диференційних рівнянь (6) за вказаних початкових умов.

Складання математичної моделі у прикладній задачі є найбільш складним і відповідальним етапом розв'язування і потребує, окрім істотних знань у спеціальній області, також і математичних і теоретичних знань.

Уже на цьому етапі розв'язування прикладної задачі доводиться нехтувати багатьма реальними процесами, як такими, що незначно впливають на процеси, які вивчаються, абстрагуватися від впливу багатьох чинників. Інакше кажучи, навіть коректно утворена математична модель завжди неповно, лише наближено. відображає реальні процеси. Але при цьому вона набуває риси більшої ясності, прозорості, більш доступна вичерпному дослідженню (із того боку, що підлягає вивченню).

1.5 Математичне моделювання

Модель утворюється задля подальшого її дослідження з метою одержати нові знання про відповідний реальний об'єкт. Таке дослідження вже готової моделі називають моделюванням. Дослідження математичної моделі називатимемо математичним моделюванням.

Математична задача є абстрагованою від конкретної сутності задачі. Для її розв'язування створюються спеціальні обчислювальні методи, причому до тої самої математичної моделі можуть зводитися зовсім різні прикладні задачі.

Так, задача 1 звелася до розв'язування квадратного рівняння, яке може відображувати характеристичне рівняння не тільки фізичного, але й математичного маятника, маси, яка з'єднана пружиною з корпусом (лінійного акселерометра), гіроскопічного тахометру і т. і.

Диференційне рівняння (5) у задачі 2 може бути моделлю і для багатьох інших задач (вивчення змінювання швидкості тіла у в'язкому середовищі, змінювання електричного струму у найпростішому електричному ланцюзі, змінювання швидкості репродукції бактерій тощо).

Задля розв'язування задачі 3 потрібно обчислити низку визначених інтегралів. До обчислення визначених інтегралів приходять і при відшукуванні площ складних фігур, об'єму тіла або дуги плоскої кривої, розрахунках роботи змінної сили й у багатьох інших фізичних задачах.

Математична модель (7) задачі 4 може описувати не тільки поводження гіроскопу, але й будь-якої іншої системи, якщо диференційні рівняння руху останньої збігаються з рівняннями (6).

1.5.1 Побудова обчислювальної моделі

Побудова обчислювальної моделі може здійснюватися різними методами, які можна поділити на точні й наближені. Точні методи - це такі, які після скінченої кількості дій (обчислень) приводять до точного результату за умови, що обчислення здійснюються без похибок. Наближеними називають такі методи, які за тих же умов дозволяють одержати результат лише з деякою похибкою.

При використанні точних методів етап досліджування математичної моделі поділяється на такі підетапи:

1) відшукування точного розв'язку математичної моделі;

2) підставляння вихідних даних у знайдений точний розв'язок і реалізація передбачених ним обчислень.

Наприклад, для розв'язування задачі 1 краще використати точний метод, тобто формулу

(1.8)

(припускається, що

), але можна застосовувати й наближені способи відшукування коренів квадратного рівняння.

Диференційне рівняння (5) задачі 2 краще розв'язувати, розділяючи змінні, тобто приводячи його до вигляду

. (1.9)

Однак, його можна розглядати і як лінійне диференційне рівняння зі сталими коефіцієнтами, або розв'язувати (інтегрувати) наближеними чисельними методами.

При розв'язуванні задачі 3 слід використовувати методи наближеного обчислення визначених інтегралів.

Задачу 4 також можна розв'язувати двома шляхами. Розглядаючи систему диференційних рівнянь (6) як вихідну математичну модель, можна, з одного боку, знайти точний її розв'язок (7), а потім здійснити підставляння значень вихідних даних і дійти явних залежностей

і
, а отже, й
. З іншого боку, до системи (6) можна безпосередньо застосувати методи чисельного інтегрування диференційних рівнянь (наближені методи).

Досліджування математичної моделі наближеними методами поділяється на такі етапи:

1) обрання обчислювального методу (зазвичай наближених чисельних методів буває декілька);

2) вивчення або складання алгоритму метода;

3) реалізація алгоритму за допомогою обчислювальних засобів.

При виборі чисельного методу суттєвими є обсяг обчислень, швидкість збіжності обчислень (як швидко здобувається результат) та інші чинники. Зокрема, обрання методу залежить і від вхідних даних.

Крім того, на вибір метода впливають засоби його реалізації (ручний розрахунок, наявність обчислювальної машини, наявність готової програми тощо). Так, якщо буде використані швидкодіюча ЕОМ і готова програма, то обсяг обчислень не повинен засмучувати виконавця і бути визначальним фактором при обранні метода. При ручному ж розрахункові слід віддати перевагу методу, який, можливо, потребує деяких певних попередніх досліджень і перетворень математичної моделі, але завдяки цьому потребує й значно меншу кількість обчислень.

1.5.2 Алгоритм методу

Алгоритмом метода називається система правил, яка задає точно визначену послідовність операцій, яка приводить до шуканого результату (точного або наближеного).

Алгоритм - одне із ґрунтовних понять математики. Хід розв'язування обчислювальної (і взагалі будь-якої) задачі має бути поданий через алгоритм.

Алгоритм можна записати словесно-формульно або у вигляді схеми. Так, словесно-формульний опис алгоритму розв'язування задачі 1 за формулою (8) має наступний вигляд:

1. Обчислити

.

2. Обчислити

.