= 0,56097[160]+ 0,13159[150]+ 0,14544[130] + 0,11202[90]+ 0,02952[70] + +0,00692[60]+ 0,00765[40]+ 0,00589[0]= 1.
Оценка расчетных состояний
Полученная функция S(Z) позволяет построить зависимость показателя надежности объекта (ВБР) от уровня нагрузки - P[Z ≥ Zнk]. Для этого следует просуммировать только те слагаемые функции S(Z), для которых значение нагрузки больше или равно заданной.
Расчеты удобно представить в виде табл. 3. По данным таблицы построен график.
Таблица 3
Зависимость ВБР системы от нагрузки
Zнk | S(Z)= β1( α(β2( х1 х2)х3β3(х5 х6)) х4 ) | P[Z≥Zнk] |
0 | 0,56097[160]+ 0,13159[150]+ 0,14544[130] + 0,11202[90]+ 0,02952[70] +0,00692[60]+ 0,00765[40]+ 0,00589[0] | 1 |
30 | 0,56097[160]+ 0,13159[150]+ 0,14544[130] + 0,11202[90]+ 0,02952[70] +0,00692[60]+ 0,00765[40] | 0,99411 |
50 | 0,56097[160]+ 0,13159[150]+ 0,14544[130] + 0,11202[90]+ 0,02952[70] +0,00692[60] | 0,98646 |
70 | 0,56097[160]+ 0,13159[150]+ 0,14544[130] + 0,11202[90]+ 0,02952[70] | 0,97954 |
90 | 0,56097[160]+ 0,13159[150]+ 0,14544[130] + 0,11202[90] | 0,95002 |
130 | 0,56097[160]+ 0,13159[150]+ 0,14544[130] | 0,838 |
150 | 0,56097[160]+ 0,13159[150] | 0,69256 |
160 | 0,56097[160] | 0,56097 |
180 | - | 0 |
Рис. 2. Показатели надежности установки в зависимости от нагрузки
Анализ графика в контрольных точках показывает:
· область вблизи номинальной нагрузки, до 70 ед., обеспечена пропускной способностью системы с вероятностью не менее 0,97954;
· максимальная нагрузка равна предельной пропускной способности и вероятность ее обеспечения минимальна.
Обеспечение нормативного уровня надежности установки
Из таблицы 2 следует, что при расчетной нагрузке 70 ед. вероятность безотказной работы установки P[Z ≥ 70] = 0.97954 не соответствует заданному нормативному уровню Pнорм = 0.98. Следовательно, требуется повышение надежности установки, которое в данном случае может быть обеспечено вводом дополнительных элементов. Следует определить тип элементов (по значению вероятности и пропускной способности), их место на схеме и количество дополнительных - резервных, - элементов. При этом затраты на резервирование должны быть минимальными.
Для усиления этой схемы добавим один резервный элемент параллельно х3. Получившаяся схема с резервированием изображена на рисунке 3.
Рис. 3. Схема с резервированием.
Возьмём в качестве резервного rэлемент типа А(70, 0.9, 8), так как его пропускная способность удовлетворяет расчётной.
Для рассматриваемой схемы структурная функция S(Z)имеет вид
S(Z)= β1( α(β2( х1 х2)βr (х3r)β3(х5 х6)) х4 ).
Вычислим выражения для каждого эквивалента:
βr= (0,9[70]+0,1[0])2 =0,92[70+70]+2•0,9•0,1[70+0]+0,12[0+0]=
= 0,81[140] + 0,18[70] + 0,01[0]= 1.
α= (0,81[100] + 0,09[60] +0,09[40]+0,01[0])•( 0,81[140] + 0,18[70] + 0,01[0]) • (0,81[100]+0,09[60] + 0,09[40] +0,01[0]) = (0,81•0,81[min{100;140}]+ 0,81•0,18[min{100;70}]+ 0,81•0,01[min{100;0}] + 0,09•0,81[min{60;140}]+ 0,09•0,18[min{60;70}]+ 0,09•0,01[min{60;0}] +0,09•0,81[min{40;140}]+ 0,09•0,18[min{40;70}]+ 0,09•0,01[min{40;0}]+0,01•0,81[min{0;140}]+ 0,01•0,18[min{0;70}]+ 0,01•0,01[min{0;0}]) • (0,81[100] + 0,09[60] + 0,09[40]+0,01[0])=
=(0,6561[100]+ 0,1458[70]+ 0,0081[0] + 0,0729[60]+ 0,0162[60]+ 0,0009[0] + 0,0729[40]+ 0,0162[40]+ 0,0009[0]+0,0081[0]+ 0,0018[0]+ 0,0001[0]) • (0,81[100] + 0,09[60] +0,09[40]+0,01[0])=
=(0,6561[100]+0,1458[70]+0,0891[60]+0,0891[40]+0,0199[0]) • (0,81[100]+0,09[60] +0,09[40]+0,01[0]) =0,6561•0,81[min{100;100}]+ 0,6561•0,09[min{100;60}] + 0,6561•0,09[min{100;40}] + 0,6561•0,01[min{100;0}] +0,1458•0,81[min{70;100}]+ 0,1458•0,09[min{70;60}] + 0,1458•0,09[min{70;40}] + 0,1458•0,01[min{70;0}]+ 0,0891•0,81[min{60;100}]+ 0,0891•0,09[min{60;60}] + 0,0891•0,09[min{60;40}] + 0,0891•0,01[min{60;0}]+ 0,0891•0,81[min{40;100}]+ 0,0891•0,09[min{40;60}] +0,0891•0,09[min{40;40}] + 0,0891•0,01[min{40;0}]+ 0,0199•0,81[min{0;100}]+ 0,0199•0,09[min{0;60}] + 0,0199•0,09[min{0;40}] + 0,0199•0,01[min{0;0}] =
= 0,53144[100]+ 0,05905[60] + 0,05905[40] + 0,00656[0] + 0,1181[70]+ 0,01312[60] + 0,01312[40] + 0,00146[0]+ 0,07217[60]+ 0,00802[60] + 0,00802[40] + 0,00089[0]+ 0,07217[40]+ 0,00802[40] + 0,00802[40] + 0,00089[0]+ 0,01612[0]+ 0,00179[0] + 0,00179[0] + 0,0002[0]=
(складываем вероятности при одинаковой пропускной способности)
= 0,53144[100]+ 0,1181[70]+0,15236[60]+0,1684[40]+0,0297[0] =1.
S(Z)=β1( α х4 ) =(0,53144[100]+ 0,1181[70]+0,15236[60]+0,1684[40] + 0,0297[0]) •(0,95[90]+ 0,05[0]) =
=0,53144•0,95[100+90] + 0,53144•0,05[100+0]+ 0,1181•0,95[70+90] + 0,1181•0,05[70+0] + 0,15236•0,95[60+90] + 0,15236•0,05[60+0] + 0,1684•0,95[40+90] + 0,1684•0,05[40+0] + 0,0297•0,95[0+90] + 0,0297•0,05[0+0]=
= 0,50487[190] + 0,02657[100]+ 0,11219[160] + 0,00591[70] + 0,14474[150] + 0,00762[60] + 0,15998[130] + 0,00842[40] + 0,02822[90] + 0,00148[0].
Из полученного выше выражения результирующая вероятность работоспособного состояния установки при расчетной нагрузке Psr[Z≥70] будет равна 0,98248, что соответствует заданному нормативному уровню.
Экономическая оценка и корректировка варианта
Удельная стоимость выбранного резервного элемента типа А равна c1 = 8 тыс.руб./ед., поэтому затраты на резервирование
Зr= cZr= 8 ∙70 = 560 тыс.руб.
Окончательно результаты расчетов и схема с выбранным вариантом резервирования представлены в табл. 4. и на рис. 3.
Таблица 4.
Параметры системы с резервированием | |||||||
Номер и обозначение элемента xi | x1 | x2 | x3 | x4 | x5 | x6 | xr |
Тип элемента | В | В | A | С | В | В | А |
Вероятность работоспособного состояния pi | 0.9 | 0.9 | 0.9 | 0.95 | 0.9 | 0.9 | 0,9 |
Пропускная способностьZi | 40 | 60 | 70 | 90 | 40 | 60 | 70 |
Результирующая вероятность работоспособного состояния установки при расчетной нагрузке 70 ед. = 0,98248 | |||||||
Затраты на резервирование 560тыс.руб. |
Заключение
В курсовой работе были показаны методы исследования и обеспечения надежности технических систем и получение практических навыков в определении отдельных показателей надежности применительно к устройствам электроснабжения. Нами использовался аналитический метод расчета сложного технического объекта и методика выбора резерва для обеспечения заданного уровня надежности системы с учетом экономических критериев.
1. Надежность и диагностика систем электроснабжения железных дорог: учебник для ВУЗов ж\д транспорта / А.В. Ефимов, А.Г. Галкин.- М: УМК МПС России, 2000. - 512с.
2. Китушин В.Г. Надежность энергетических систем: учебное пособие для электроэнергетических специальностей вузов.- М.: Высшая школа, 1984. – 256с.
3. Ковалев Г.Ф. Надежность и диагностика технических систем: задание на контрольную работу №2 с методическими указаниями для студентов IV курса специальности «Электроснабжение железнодорожного транспорта». – Иркутск: ИРИИТ, СЭИ СО РАН, 2000. -15с.
4. Дубицкий М.А. Надежность систем энергоснабжения: методическая разработка с заданием на контрольную работу. – Иркутск: ИрИИТ, ИПИ, СЭИ СО РАН, 1990. -34с.
5. Пышкин А.А. Надежность систем электроснабжения электрических железных дорог. – Екатеринбург: УЭМИИТ, 1993. - 120 с.
6. Шаманов В.И. Надежность систем железнодорожной автоматики и телемеханики: учебное пособие. Иркутск: ИрИИТ, 1999. 223с.
7. Гук Ю.Б. Анализ надежности электроэнергетических установок. - Л.: Энергоатомиздат, Ленинградское отд., 1988. – 224с.
8. Маквардт Г.Г. Применение теории вероятностей и вычислительной техники в системе энергоснабжения.- М.: Транспорт, 1972. - 224с.
9. Надежность систем энергетики. Терминология: сборник рекомендуемых терминов. - М.: Наука, 1964. -Вып. 95. – 44с.