Курсовая работа
по дисциплине “Эффективные алгоритмы исследования моделей естествознания”
на тему: «Асимптотические решения дифференциальных уравнений по малому параметру. Регулярные возмущения»
Содержание
Ведение
Применения регулярного возмущения
1. Асимптотическое поведение решений дифференциальных уравнений с малым параметром
1.1 Асимптотическое поведение решений системы
2. Регулярные возмущения
2.1 Асимптотические методы
2.2 Регулярные возмущения решений задачи Коши для обыкновенных дифференциальных уравнений
2.3 Существование решении возмущенной задачи
Литература
Ведение
Невозможно представить себе современную науку без широкого применения математического моделирования. Сущность этой методологии состоит в замене исходного объекта его «образом» — математической моделью — и дальнейшем изучении модели с помощью реализуемых на компьютерах вычислительно-логических алгоритмов. Этот «третий метод» познания, конструирования, проектирования сочетает в себе многие достоинства как теории, так и эксперимента. Работа не с самим объектом (явлением, процессом), а с его моделью дает возможность безболезненно, относительно быстро и без существенных затрат исследовать его свойства и поведение в любых мыслимых ситуациях (преимущества теории). В то же время вычислительные (компьютерные, симуляционные, имитационные) эксперименты с моделями объектов позволяют, опираясь на мощь современных вычислительных методов и технических инструментов информатики, подробно и глубоко изучать объекты в достаточной полноте, недоступной чисто теоретическим подходам (преимущества эксперимента).
Неудивительно, что методология математического моделирования бурно развивается, охватывая все новые сферы — от разработки технических систем и управления ими до анализа сложнейших экономических и социальных процессов.
Сейчас математическое моделирование вступает в третий принципиально важный этап своего развития, «встраиваясь» в структуры так называемого информационного общества.
Применения регулярного возмущения
Выходные пучки лазеров часто имеют квазирегулярную модуляцию волнового фронта (ВФ). В газовых лазерах с движущейся активной средой такую модуляцию могут вызывать неоднородности, возникающие под действием периодической сопловой решетки [1], под влиянием страт и доменов в газовом разряде [2], в результате наложения ударных волн [3,4], а также под действием ряда других физических факторов. Модуляция ВФ выходных лазерных пучков в литературе чаще всего рассматривается как фактор, влияющий, прежде всего на расходимость излучения.
Гораздо меньше внимания уделяется анализу метаморфоз структуры ВФ, условиям появления и взаимосвязи каустических и фазовых дислокационных образований в лазерных пучках. Такого рода образования регистрируются в излучении лазеров с самыми разными оптическими резонаторами [5,6]. В настоящей работе рассматриваются качественные изменения амплитудно-фазовой структуры лазерных пучков, первоначально обладающих плавной регулярной модуляцией ВФ.
Общее представление о характере рассматриваемых процессов можно получить на примере известной задачи [7] о распространении безграничной волны, фаза которой в начальной плоскости меняется по гармоническому закону. Амплитуда такой волны имеет следующий вид:
где m - параметр, характеризующий глубину фазовой модуляции; х - поперечная координата; а - период модуляции. На расстоянии z от начальной плоскости поле можно представить в виде суперпозиции плоских волн [7]:
где
- функция Бесселя порядка - волновое число. Это поле является частным случаем самовоспроизводящихся полей, свойства которых нашли применение в лазерной технике [8,9]Используя для расчета характеристик поля его разложение по плоским волнам (2), а также лучевой метод из работы [10], можно установить основные особенности трансформации первоначального распределения амплитуды и фазы. Расчеты показывают, что даже при малой глубине модуляции фазы и равномерном распределении интенсивности в начальной плоскости дифракционные эффекты приводят к значительному пространственному перераспределению интенсивности.
Перераспределение наиболее заметно вблизи плоскостей
Эти плоскости располагаются между плоскостями, в которых, согласно эффекту Тальбо, воспроизводится первоначальное равномерное распределение интенсивности. Так, при m = 0.1 контраст картины распределения интенсивности , а при m = 0.5 контраст К = 2.82. С превышением определенной критической глубины модуляции в структуре волны происходят качественные изменения..На рис.1 приведены распределения амплитуды А и фазы Ф на расстояниях
при разных первоначальных глубинах модуляции фазы. Видно, что при превышении критической глубины модуляции появляются линии с нулевыми амплитудами. В распределении фазы им соответствуют КД, обусловленные скачкообразным изменением фазы на π. КД располагаются симметрично относительно осей клювообразных каустик. Клювы каустик, находящиеся сначала вблизи плоскостей , с дальнейшим увеличением глубины фазовой модуляции приближаются к плоскостям воспроизведения первоначальной структуры. При этом растет и число КД.Их расположение по отношению к образующим каустик соответствует рассчитанной на основе интеграла Перси фазовой структуре поля, приведенной в работе [11].
Рис. 1. Распределение амплитуды А (1,2) и фазы Ф (3,4) по поперечной координате х для безграничной волны на расстоянии
стрелками указано положение клювов каустик.Продольная структура распределения интенсивности излучения показана на рис. 2 для т = 1.2. Из него видно, что фазовая модуляция вызывает формирование каналов, вытянутых вдоль направления распространения, в которых интенсивность излучения существенно превышает среднюю. Оси этих областей совпадают с осями симметрии клювообразных каустик.
Если фазовая модуляция в начальной плоскости осуществляется не по одной а по двум поперечным координатам, то появляется возможность формирования винтовых дислокаций (ВД) волнового фронта. ВД отличаются от КД принципиально иной топологической структурой (при обходе вокруг ВД фаза меняется на 2п). На рис. 3,а приведена структура эквифазных линий ВФ в начальной плоскости когда распределение поля задается формулой
Здесь функция
) совпадает с функцией при замене поперечной координаты х поперечной координатой у С —константа.Структура эквифазных линий в начальной плоскости на рис.3,а построена с помощью формулы (3) для С = 0.2 и m = 2. Ход линий свидетельствует о наличии плавных регулярных возмущений волнового фронта. На рис.3,6 изображена структура эквифазных линий на расстояниях
ВД располагаются в точках пересечения эквифазных линий. Они образуют своеобразные квадруполи каждый из которых состоит из четырех ВД. Две из них имеют положительный знак (являются «правыми»), две - отрицательный знак (являются «левыми»). Квадруполи окружают оси каустик.
В отличие от КД каждая из которых строго говоря формируется в определенной плоскости z = const, ВД характеризуются определенной продольной длиной. Как и КД дислокации винтового типа возникают лишь при превышении глубиной первоначальной модуляции волнового фронта некоторого критического значения. Если обозначить через
разность между максимальной и минимальной фазами в начальной плоскости (при модуляции по одной координате совпадает с ni) то ВД будут возникать когда >Все вышеперечисленные эффекты были проанализированы применительно к пространственно-ограниченному пучку с гауссовым профилем распределения интенсивности. В основу расчета была положена формула (2), в которой суперпозиция плоских волн была заменена системой распространяющихся под углом друг к другу raусовых мод свободного пространства [12]. Горловины мод располагались в начальной плоскости
Расчеты показали, что переход к более точной модели гауссова пучка с периодической модуляцией ВФ не вносит существенных качественных изменений в данные о преобразовании амплитудно-фазового распределения, по крайней мере на расстояниях сопоставимых с характерной длиной
. Как и в случае безграничной волны дислокации ВФ начинают формироваться в ближней зоне, когда глубина модуляции фазы превышает . Сказанное иллюстрирует рис. 4, который является аналогом рис. 1 для гауссова пучка. Отношение радиуса пучка в горловине к периоду модуляции, а равно пяти.