Допустим, что
--- собственная в подгруппа. Если , то , . Так как , то --- подгруппа индекса 2 в , а . Подгруппа имеет единичный центр, поэтому централизатор в имеет порядок 1 или 2. В первом случае и из пункта 4) теоремы (??). Во втором случае и силовская 2-подгруппа в ) должна быть абелевой, что невозможно. Таким образом, если , то , а .Пусть теперь
. Если , то индекс в равен 2, а так как --- совершенная группа, то . Но это противоречит тому, что в силовская 2-группа диэдральная. Поэтому для одна возможность: . Но тогда , а , т. е. для возможна единственная факторизация, указанная в пункте 5).Теперь рассмотрим случай, когда
. Эта группа допускает единственную факторизацию, указанную в пункте 3) теоремы. Пусть . Так как --- подгруппа индекса 3 в , то . Причем , а . Но тогда ,а --- силовская 3-подгруппа из .Осталось рассмотреть случай, когда
. Так как индекс в группе автоморфизмов равен 2, то либо , либо . Но в нет подгрупп индекса 13.Применяя лемму (??), заключаем, что
из пункта 7) теоремы. Теорема (??) доказана полностью.Следствие Пусть группа является произведением бипримарной подгруппы с неединичной циклической силовской подгруппой и примарной подгруппы . Тогда, если порядок не равен 3 или 7, то разрешима.
Доказательство. Пусть
--- контрпример минимального порядка. Так как фактор-группа неразрешима, то из теоремы 2 следует, что она изоморфна , где , 7 или 8; , или 7; . Поэтому порядок -группы равен 3 или 7. Значит, или 7, .Пусть
--- минимальная разрешимая инвариантная в подгруппа. Ясно, что есть -группа, а так как циклическая, то порядка . Централизатор подгруппы инвариантен в , поэтому . Кроме того, . Если , то разрешима по индукции, a примарна или бипримарна, т. е. разрешима и , противоречие. Следовательно, , и содержится в центре группы .Пусть
--- коммутант группы . По [??] пересечение равно 1. Значит, не содержится в . Из цикличности следует, что подгруппа имеет порядок, не делящийся на , т. е. разрешима. Теперь и разрешима, противоречие. Следствие доказано.Группы Шмидта и
-квазинильпотентные группы обладают неединичной циклической силовской подгруппой. Поэтому следствие обобщает результаты И. П. Д окторова [??] и М. И. Кравчука [??].